摘要
根据中国不同地理区森林生产力和气候环境变量的数据构建了中国森林气候生产力模型,以此为基础研究了气候变化对中国森林生产力的影响。结果表明:在所构建的模型中,除海拔高度与净生产力的相关模型外,其它模型均有较高的实用价值,模型的拟合曲线变化,基本反映了中国森林现实生产力的地理分布格局;中国森林生产力的分布格局主要取决于气候环境中的水热条件,水分条件是决定中国大部分地区森林生产力水平和地理分布格局的主导因素;根据7个GCMs大气环流模型预测合成的2030年的气候情景,研究气候变化对中国森林生产力影响的结果是:气候变化并没有改变中国森林第一性生产力的地理分布格局,即从东南向西北森林生产力递减趋势不变,但不同地域的森林生产力有不同程度的增加。气候变化后中国森林生产力变化率的地理分布格局与森林第一性生产力的地理分布格局相反,呈现从东南向西北递增的趋势。
Models of climatic productivity of forests in China were established through regression analysis of net primary productivity of forests distributing in different geographical regions versus the corresponding meteorological variables.The established models in which annual precipitation was incorporated as the principal variable indicate a very closely correlation between forest productivity and its corresponding climatic factors,allowing to simulate distribution pattern of actual forest productivity effectively.By means of GIS in conjunction with the established models,the forest productivity in response to the climate change scenario in 2030 was predicted,suggesting that the predicted geographical distribution pattern of net productivity of forests in China was the same as that of current actual patterns,i.e.forest productivity gradually decreased with the increasing latitude and from south east to north west direction within China.The predicted net primary productivity of forests,however,was found to increase at the varying degrees in different geographical regions,as compared to the current climate scenario.The percentage difference of forest productivity between under the future climate change and the current climate scenario was found to increase with the increasing latitude,being opposite to the distribution pattern of actual net primary productivity of forests.This might be attributable to larger increase in air temperature and precipitation in the high latitudes than in the low latitudes under the future climate change.
出处
《生态学报》
CAS
CSCD
北大核心
1998年第5期478-483,共6页
Acta Ecologica Sinica
基金
国家科委"九五"国家攻关专题
关键词
气候变化
森林生产力
中国
预测
climate change,forest productivity,prediction,China.