期刊文献+

粒子滤波自适应机制研究综述 被引量:8

Survey on adaptive mechanisms of particle filter
下载PDF
导出
摘要 针对粒子滤波固有的缺陷,结合移动机器人领域的研究应用成果,分别从样本数目自适应、重采样自适应、建议分布自适应、运动/似然模型自适应以及与其他方法的集成等几个方面对粒子滤波自适应机制当前研究的关键技术进行了归纳总结,并且对该研究领域需要解决的研究难点进行了总结,对进一步研究的方向进行了展望。 Aimed at the inherent deficiency in particle filter and combined with the up-to-date research and application in the mobile robot field, this paper summarized some key teehnologies in current study from the adaptive mechanism of sample size respectively, the resampling strategy, proposal distribution, motion/likelihood model and the integration with other methods. At the same time, concluded the main challenges that needed to be solved in this field and also presented some future trends about the technology of these difficulties.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期417-422,428,共7页 Application Research of Computers
基金 河南省教育厅自然科学基金资助项目(2008B520015 2009B520013) 河南理工大学博士基金资助项目(B2008-61 B2009-91) 江苏省图像处理与图像通信重点实验室开放研究课题(ZK208002)
关键词 粒子滤波 自适应机制 样本数目 重采样 建议分布 运动/似然模型 particle filter adaptive mechanisms sample size resampling proposal distribution motion/likelihood model
  • 相关文献

参考文献56

  • 1GORDON N J, SALMOND D J, SMITH A F M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J ]. IUEE Proceedings on Radar and Signal Processing, 1993, 140(2) :107- 113.
  • 2DELLAERT F, BURGARD W, FOX D, et al. Monte Carlo localization for mobile robots[ C ]//Proc of IEEE International Conference on Robotics and Automation. Detroit: IEEE Press, 1999: 1322-1328.
  • 3SCHULZ D, BURGARD W, FOX D, et al. Tracking multiple moving targets with a mobile robot using particle filters and statistical data association[ C]//Proc of IEEE International Conference on Robotics and Automation. Seoul, Korea: IEEE Press, 2001:1665-1670.
  • 4MONTEMERLO M, THRUN S, KOLLER D, et al. FastSLAM: a factored solution to simultaneous localization and mapping problem [ C]//Proc of the National Conference on Artificial Intelligence. Edmonton, Canada: AAAI Press, 2002:593- 598.
  • 5VERMA V, GORDON G, SIMMONS R, et al. Particle filters for rover fault diagnosis [ J]. IEEE Robotics a Automation Magazine Special Issue on Human Centered Robotics and Dependability, 2004, 11(2):1-4.
  • 6DOUCET A, GODSILL S J, ANDRIEU C. On sequential Monte Carlo sampling methods for Bayesian filtering [ J ]. Statistics and Computing, 2000, 10(3) :197-208.
  • 7ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking [ J ], IEEE Trans on Signal Processing, 2002, 50 (2) : 174- 188.
  • 8CHEN Z. Bayesian filtering: from Kalman filters to particle fihers, and beyond[ R]. Hamilton: McMaster University, 2003.
  • 9胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 10夏克寒,许化龙,张朴睿.粒子滤波的关键技术及应用[J].电光与控制,2005,12(6):1-4. 被引量:34

二级参考文献317

共引文献545

同被引文献90

引证文献8

二级引证文献220

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部