期刊文献+

基于粒子群算法的跳频信号参数估计 被引量:10

Parameter estimation of frequency hopping signal based on particle swarm optimization
下载PDF
导出
摘要 针对基于时频分布的参数估计存在信噪比阈值和低信噪比下方差大的问题,提出了一种基于多峰优化粒子群算法的跳频信号参数估计新算法。该算法首先将跳频信号分解为时频原子的线性组合,然后由匹配原子获取跳频信号的参数估计。仿真结果表明,基于改进的物种形成粒子群算法能够搜索到与跳频信号分量相匹配的原子,与平滑伪魏格纳分布相比,提出的参数估计算法在低信噪比下具有较小的估计方差,更加适宜于电子战的实际应用。 To aim at parameter estimation of signal to noise ratio (SNR) and high variance in low SNR based on time frequency distribution, this paper proposed a novel algorithm based on muhimodal particle swarm optimization (PSO). First decomposed frequency hopping signal to linear combination of time frequency atoms, and then obtained its parameter by matched atomic parameter. Simulation showed that PSO using specification algorithm could find all the atoms that matched with frequency hopping components. Compared with smoothed pseudo Wigner-Ville distribution, the designed algorithm has lower variance and is more suitable for the actual application of electronic countermeasure.
出处 《计算机应用研究》 CSCD 北大核心 2010年第2期512-514,共3页 Application Research of Computers
基金 河南省科技计划资助项目(D2008090217261501) 信阳师范学院高层次人才科研启动基金资助项目(90217)
关键词 跳频信号 参数估计 粒子群 多峰优化 frequency hopping signal parameter estimation particle swarm multimodal optimization
  • 相关文献

参考文献10

二级参考文献37

  • 1[美]科恩L著 自居宪译.时-频分析:理论与应用[M].西安:西安交通大学出版社,1998..
  • 2Barbarossa S. Parameter estimation of spread spectrum frequency hopping signals using time frequency distributions[C].Proc. of 1997 First IEEE Workshop on Signal Processing Advances in Wireless Communications, 1997: 213- 216.
  • 3Auger F, Flandrin P. Improving the readability of time-frequency and time-scale representations by the reassignment method [J]. IEEE Trans. Signal Processing, 1995, 43(5):1068-1089.
  • 4Auger F, Flandrin P. Generalization of the reassignment method to all bilinear time-frequency and time-scale representation[C]. Proc. of IEEE ICASSP, 1994:317-320.
  • 5Djurovic I. A reassignment-based method for time-frequency representation[C].Proc, of ICES'99, 1999:1357-1360.
  • 6Auger F, Flandrin P. The why and how of the time-frequency reassignment[C].Proc, of IEEE International Symposium on Time-Frequency and Time-Scale Analysis, 1994 : 197 - 200.
  • 7Cohen L. Time-frequency analysis[M]. New Jersey: Prentice Hall , Englewood Cliffs , 1995.
  • 8Boashash B. Note on the use of the Wigner distribution for timefrequency signal analysis[J]. IEEE Trans. Acoust. , Speech, SignalProcessing, 1988, 36:1518-1521.
  • 9[3]Daubechies I.The wavelet transform,Time-frequency locatization and signal analysis[J].IEEE Trans.Inform.Theory,Sep 1990:97~101.
  • 10[4]Stephane Mallat.信号处理中的小波导引[M].杨力华,戴道清,黄文良,等译.第2版,北京:机械工业出版社,2002:58~66.

共引文献105

同被引文献129

引证文献10

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部