期刊文献+

一种改进的粒子群和K均值混合聚类算法 被引量:79

Improved Cluster Algorithm Based on K-Means and Particle Swarm Optimization
下载PDF
导出
摘要 该文针对K均值聚类算法存在的缺点,提出一种改进的粒子群优化(PSO)和K均值混合聚类算法。该算法在运行过程中通过引入小概率随机变异操作增强种群的多样性,提高了混合聚类算法全局搜索能力,并根据群体适应度方差来确定K均值算法操作时机,增强算法局部精确搜索能力的同时缩短了收敛时间。将此算法与K均值聚类算法、基于PSO聚类算法和基于传统的粒子群K均值聚类算法进行比较,数据实验证明,该算法有较好的全局收敛性,不仅能有效地克服其他算法易陷入局部极小值的缺点,而且全局收敛能力和收敛速度都有显著提高。 To deal with the problem of premature convergence of the traditional K-means algorithm, a novel K-means cluster method based on the enhanced Particle Swarm Optimization(PSO) algorithm is presented. In this approach, the stochastic mutation operation is introduced into the PSO evolution, which reinforces the exploitation of global optimum of the PSO algorithm. In order to avoid the premature convergence and speed up the convergence, traditional K-means algorithm is used to explore the local search space more efficiently dynamically according to the variation of the particle swarm's fitness variance. Comparison of the performance of the proposed approach with the cluster method based on K-means, traditional PSO algorithm and other PSO-K-means Mgorithm is experimented. The experimental results show the proposed method can not only effectively solve the premature convergence problem, but also significantly speed up the convergence.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第1期92-97,共6页 Journal of Electronics & Information Technology
基金 哈尔滨工程大学校科研基金(002080260735) 黑龙江省博士后基金(LBH-Z08227)资助课题
关键词 K均值算法 粒子群优化算法 随机变异 适应度方差 K-means algorithm Particle Swarm Optimization(PSO) algorithm Stochastic mutation Fitness variance
  • 相关文献

参考文献15

  • 1陈金山,韦岗.遗传+模糊C-均值混合聚类算法[J].电子与信息学报,2002,24(2):210-215. 被引量:23
  • 2Li M J and Ng M K, et al.. Agglomerative fuzzy K-means clustering algorithm with selection of number of clusters[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(11): 1519-1534.
  • 3Krishma K and Murty M N. Genetic Kmeans algorithm[J] . IEEE Transactions on System, Man and Cybernetics, Part B, 1999, 29(3): 433-439.
  • 4Maulik U and Bandyopadhay S. Genetic algorithm-based clustering technique[J]. Pattern Recognition, 2000, 33(9): 1455-1465.
  • 5孟伟,韩学东,洪炳镕.蜜蜂进化型遗传算法[J].电子学报,2006,34(7):1294-1300. 被引量:78
  • 6Kennedy J and Eberhart R. Particle swarm optimization[C]. Proceedings of IEEE international conference on neural networks, Perth, Australia, 1995: 1942-1948.
  • 7吕振肃,侯志荣.自适应变异的粒子群优化算法[J].电子学报,2004,32(3):416-420. 被引量:451
  • 8Del V Y and Venayagamoorthy G K. Particle Swarm Optimization: Basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2): 171-195.
  • 9Van den Bergh F and Engelbrecht A P. A Cooperative approach to particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 225-239.
  • 10曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160

二级参考文献48

  • 1刘靖明,韩丽川,侯立文.一种新的聚类算法——粒子群聚类算法[J].计算机工程与应用,2005,41(20):183-185. 被引量:25
  • 2张青富 李乃奎 等.遗传算法+正交设计:一种新的全局优化算法.第4届中国人工智能联合学术会议论文集[M].北京:清华大学出版社,1996.127-133.
  • 3王小平 曹立明.遗传算法-理论、算法与软件实现[M].陕西西安:西安交通大学出版社,2002.105-107.
  • 4P N Suganthan. Particle swarm optimiser with neighbourhood operator. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1958~1962
  • 5E Ozcan, C Mohan. Particle swarm optimization: Surfing the waves. In: Proc of the Congress on Evolutionary Computation.Piscataway, NJ: IEEE Service Center, 1999. 1939~1944
  • 6M Clerc, J Kennedy. The particle swarm: Explosion, stability and convergence in a multi-dimensional complex space. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58~73
  • 7F Solis, R Wets. Minimization by random search techniques.Mathematics of Operations Research, 1981, 6(1 ): 19~ 30
  • 8F Van den Bergh. An analysis of particle swarm optimizers: [ Ph D dissertation]. Pretoria: University of Pretoria, 2001
  • 9王凌.智能优化算法及其应用.北京:清华大学出版社,2001( Wang Ling. Intelligent Optimization Algorithms with Applications( in Chinese) . Beijing: Tsinghua University Press,2001)
  • 10J Holland. Adaption in Natural and Artificial Systems. Ann Arbor, MI: University of Michigan Press, 1975

共引文献927

同被引文献683

引证文献79

二级引证文献536

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部