期刊文献+

一种基于指数渐消因子的自适应卡尔曼滤波算法 被引量:16

Adaptive Kalman filtering algorithm based on exponent fading factor
下载PDF
导出
摘要 本文应用自适应估计理论,提出了一种指数渐消因子自适应算法。该算法通过实测残差与理论残差的比值来确定指数方程的系数,调节自适应渐消因子,保证了滤波的稳定性,提高了滤波精度,并且冲破了经验储备系数的限制。最后对比其他三种自适应滤波算法进行了仿真比较,仿真结果表明,指数渐消因子自适应滤波算法是一种实用而有效的算法。 The standard Kalman filter requires an accurate mathematical model whose system noise and measuring noise are white and no-correlated noise. However, it is difficult to establish an accurate mathematical model as well as most of the statistical characteristics of noise are unknown.. This paper proposes an exponent fading factor adaptive algorithm based on the adaptive estimation. The algorithm confirms exponent equation's coefficient by calculating the ratio of the real value and the theoretical value of residual covariance, accommodates the fading factor and ensures the filter's stability and precision. What's more, it breaks the restriction of the experiential reserve coefficient. The algorithm is compared with other three algorithms. Results show that the algorithm is a filtering method which is highly adaptive and effective.
作者 孙章国 钱峰
出处 《电子测量技术》 2010年第1期40-42,共3页 Electronic Measurement Technology
关键词 卡尔曼滤波 自适应卡尔曼滤波 指数渐消因子 储备系数 Kalman filtering adaptive Kalman filtering exponent fading factor experiential reserve coefficient
  • 相关文献

参考文献8

二级参考文献11

  • 1徐景硕,秦永元,彭蓉.自适应卡尔曼滤波器渐消因子选取方法研究[J].系统工程与电子技术,2004,26(11):1552-1554. 被引量:68
  • 2梦印,邓志红,张继伟.Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003.
  • 3Xia Q,Raoand M,Ying Y.Adaptive fading Kalman filter with an application[J].Automatica,1994,30(12):1333-1338.
  • 4Carlson N A,Berardcci M P.Federated Kalman filter simulation results[J].Navigation:Journal of Institute of Navigation,1994,41 (3):297-321.
  • 5库索夫可夫HT 章燕申(译).控制系统的最优滤波和辨识方法[M].北京:国防工业出版社,1984..
  • 6库索夫可夫H T.控制系统的最优滤波和辨识方法[M].章燕申译.北京:国防工业出版社,1984:173-177.
  • 7Xia Qijun, Rao Ming, Ying Yi-qun, et al. Adaptive fading kalman filter with an application[J]. Automatica, 1994, 30(12): 1333-1338.
  • 8Levent Ozbek, Aliev Fazil A. Coment on adaptive fading kalman filter with an application[J]. Aautomatica, 1998, 34(12): 1663-1664.
  • 9刘瑞华,刘建业.联邦滤波信息分配新方法[J].中国惯性技术学报,2001,9(2):28-32. 被引量:35
  • 10耿延睿,崔中兴.组合导航系统卡尔曼滤波衰减因子自适应估计算法研究[J].中国惯性技术学报,2001,9(4):8-10. 被引量:20

共引文献87

同被引文献155

引证文献16

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部