期刊文献+

一类互惠模型平衡解的分歧与稳定 被引量:1

Bifurcation and Stability of the Steady-state Solutions for a Cooperative Model
下载PDF
导出
摘要 研究了一类具有饱和项的Volterra-Lotka互惠模型在齐次Neumann边界条件下正平衡的分歧与稳定。利用特征值分歧理论和谱分析方法,以b,a为分歧参数分别研究了当m=1和n=1时系统在常数平衡解(a~(1/α),0)和(0,b~(1/β))附近出现分歧现象,进而得到了该模型正平衡解存在的充分条件;同时运用线性算子的扰动理论和分歧解的稳定理论给出了分歧解的稳定性。 The bifurcation and the stability of the positive steady-state solutions of the Volterra- Lotka cooperative model with homogeneous Neumann boundary are investigated by the methods of spectral analysis and bifurcation the-ory . The bifurcations at the steady-state solution (a 1/α,0) and (0,b 1/β) for two cases m =1 and n = 1 are acquired by treating b and a as a bifurcation parameters. Some sufficient conditions for the existence of positive steady-state solution are given. Moreover, some stability results of the bifurcation solutions are obtained by using perturbation theory of linear operators and stability theory of bifurcation solutions.
出处 《科学技术与工程》 2010年第3期625-629,共5页 Science Technology and Engineering
基金 国家自然科学基金(10571115) 陕西省自然科学基础研究项目(2007A11)资助
关键词 互惠模型 平衡解 局部分歧 稳定性 cooperative model steady-state solutions local-bifurcation stability
  • 相关文献

参考文献15

  • 1Cosner C, Lazer A. Stable coexistence states in the Volterra-Lotka competition model with diffusion. Application Mathematics,1984;44: 1112-1132.
  • 2Blat J, Brown J. Bifurcation of steady-state solution in the predatorprey and competition systems. Royal Society of Edinburgh, 1984 ; 97 : 21 -34.
  • 3Korman P, Leung A. On the existence and uniqueness of positive steady state in the Voherra-Lotka ecological models with diffusion .Application Analysis, 1987 ;26 : 145--160.
  • 4Lou Yuan. Necessary and snlficient condition for the existence of positive solution of certain coop-erative system. Nonlinear Analysis 1996 ; 26(6) :1079--1095.
  • 5Li Zhengyuan, Mottonip D. Bifurcation for some systems of cooperative and predator-prey type. Journal of Partial Differential Equations, 1992 ;5:25--36.
  • 6Kim Kwang-ik, Lin Zhigui. Blow up in a three-species cooperating model. Applied Mathematics Letters ,2004 ; 17 :89-94.
  • 7李艳玲,马逸尘.具有饱和项的互惠模型正解的存在性[J].西安交通大学学报,2003,37(6):650-652. 被引量:11
  • 8Wu J H. Global bifurcation of coexistence state for the competition model in the chemostat. Nonlinear Analysis,2000 ;39 ( 7 ) : 817-835.
  • 9谢强军,李艳玲.一类捕食模型正平衡解的分支和稳定性[J].陕西师范大学学报(自然科学版),2004,32(1):18-20. 被引量:9
  • 10黑力军.一类具有扩散的互惠共食系统的存在性和全局吸引性[J].应用数学,2005,18(4):594-602. 被引量:1

二级参考文献50

  • 1[1]Blat J, Brown K J. Bifurcation of steady-state solutions in predator-prey and competition systems[J]. Proc Roy Soc Edinburgh, 1984, 97A: 21~34.
  • 2[2]Conway E D, Gardner R, Smoller J. Stability and bifurcation of steady state solutions for predator-prey equations[J]. Adv Appl Math, 1982, 3: 288~334.
  • 3[3]Li L, Ghoreshi A. On positive solutions of general nonlinear elliptic symbolic interacting systems[J]. Applicable Anal, 1991, 40: 281~295.
  • 4[4]Wu J H. Global bifurcation of coexistence state for the competition model in the hemostat[J]. Nonl Anal, 2000, 39: 817~835.
  • 5[5]Crandall M G, Rabinowitz P H. Bifurcation, perturbation of simple eigenvalues, and linearized stability[J]. Arch Rational Mech Anal, 1973, 52: 161~180.
  • 6[6]Smoller J. Shock waves and reaction-diffusion equations[M]. New York: Springer-Verlag, 1983.
  • 7Korman P, Leung A. On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion [J]. Appl Anal, 1987,26(2): 145-160.
  • 8Li Z Y, De Mottoni P. Bifurcation for some systems of cooperative and predator-prey type [J]. J Partial Differential Equations, 1992,5: 25-36.
  • 9Casal A. Existence and uniqueness of coexistence states for a predator-prey model with diffusion [J]. Differential and Integral Equations, 1994,7(2) :411-439.
  • 10Wu J H. Coexistence state for cooperative model with diffusion [J]. Computers and Mathematics with Applications, 2002,43 : 1279-1290.

共引文献19

同被引文献12

  • 1Ricci C.Dormancy patterns in rotifers[J].Hydrobiologia,2001, 446: 1-11.
  • 2Hairston N G, Hansen A M, Schaffner W R.The effect ofdiapause emergence on the seasonal dynamics of a zooplank- ton assemblage[J].Freshw Biol, 2000,45 : 133 - 145.
  • 3Cyllstrom M ,Hansson L A.Dormancy in freshwater zooplank- ton: induction, termination and the importance of benthic-pe- lagic coupling[J].Aquat Sci,2004,66:274-295.
  • 4Carvalho G R.Hughes R N.Effect of food availability, female culture-density and photoperiod on ephippia production in Daphniamagna Strauss(Crustacea;Cladocera)[J].Freshw Biol, 1983,13 : 37-46.
  • 5Alekseev V, Lampert W.Maternal control of resting-egg pro- duction in Daphnia[J].Nature, 2001,414 : 899-901.
  • 6Smoller J.Shock waves and reaction-diffusion equation[M]. 2nd ed.New York:Springer-Verlag, 1994.
  • 7Baxley J V,Thompson H B.Nonlinear boundary value prob- lems and competition in the chemostat[J].Nonlinear Anal, 1994,22: 1329-1344.
  • 8Wu J H.Global bifurcation of coexistence state for the com- petition model in the chemostat[J].Nonlinear Anal,2000,39: 817-835.
  • 9李津,李艳玲.一类反应扩散方程组平衡解的局部分歧及稳定性[J].陕西师范大学学报(自然科学版),2008,36(2):15-18. 被引量:4
  • 10权利娜,李艳玲.一类捕食-食饵模型非常数正解的存在性[J].科学技术与工程,2010,10(28):6963-6966. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部