期刊文献+

一种无限长时间序列的分段线性拟合算法 被引量:16

An Piecewise Linear Fitting Algorithm for Infinite Time Series
下载PDF
导出
摘要 本文提出了一种无限长时间序列的分段线性拟合(Infinite Time Series-Piecewice Linear Fitting,简称ITS-PLF)算法,该算法根据关键点保持时间段的统计特性,确定选择关键点的区间范围;若极值点的保持时间段不在区间范围,则根据包含极值点的连续三个时间数据之间的夹角与筛选角度之间的关系,判断该极值点成为关键点的可能性.实验表明,ITS-PLF算法的执行不依赖于时间序列长度及领域知识,可以有效识别关键点,并可根据数据压缩率的变化实现自适应拟合. In order to resolving the problem of depending on the length of time series and domain knowledge of traditional PLF algorithm, we proposed a Piecewise Linear Fitting algorithm for Infinite Time Series ( ITS_ PLF). To determine the interval of Key Points selecting, the statistical attributes of maintaining time of these Key Points was considered. If the maintaining time of a Extreme Point beyond the selection interval, the relation between the threshold angle and the angle of three consecutive data points containing the Extreme Point was selected to determine whether the Extreme Point was a Key Point or not. The experimental results show that ITS _ PLF algorithm does not depend on the length of time series and domain knowledge, can effectively identify the Key Point and adaptively fit the time series according to the changing of the data compression ratio.
出处 《电子学报》 EI CAS CSCD 北大核心 2010年第2期443-448,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.50674086) 中国矿业大学青年科研基金(No.2008A041)
关键词 时间序列 分段线性拟合 压缩率 time series piecewise linear fitting compression ratio
  • 相关文献

参考文献6

  • 1T Pavlidis, S L Horowitz. Segmentation of plane curves[J ]. Transactions on Computers, 1974,23(8):860- 870.
  • 2Kevin B Pratt, Eugene Fink. Search for patterns in compressed time series [ J ], International Journal of Image and Graphics. 2002,2(1) :89 - 106.
  • 3Sanghyun Park, Sang-wook Kim, Wesley W. Chu. Segment - based approach for subsequence searches in sequence databases [A ]. Proceedings of the 16th ACM Symposium on Applied Computing[ C]. New York: ACM Press, 21300.248 - 252.
  • 4Sanghyun Park,Dongwon Lee, Wesley W Chu. Fast retrieval of similar subsequences in long sequence databases[ A] .Proceedings of the 1999 Workshop on Knowledge and Data Engineering Exchange[ C]. Washington: IEEE, Computer Society, 1999. 60-67.
  • 5肖辉,胡运发.基于分段时间弯曲距离的时间序列挖掘[J].计算机研究与发展,2005,42(1):72-78. 被引量:59
  • 6Hyndman, R J(n d). Time Series Data Library(DB/OL), http://www. robhyrldman. info/TSDL, 2009-5.

二级参考文献16

  • 1G. Das, K. Lin, H. Mannila, et al.Rule discovery from time series. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 16--22.
  • 2A. Debregeas, G. Hebrail. Interactive interpretation of Kohonen maps applied to curves. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 179--183.
  • 3E. Keogh, M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering andrelevance feedback. In: Proc. of the 4th Int'l Conf. of Knowledge Discovery and Data Mining. Menlo Park, CA: AAAI Press, 1998. 239--241.
  • 4Z. M. Kovacs-Vajna. A fingerprint verification system based on triangular matching and dynamic time warping. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22 (11) : 1266-- 1276.
  • 5S. Park, S. Kim, W. Chu. Segment-based approach for subsequence searches in sequence databases. The 16th ACM Symp on Applied Computing, Las Vegas, NV, 2001.
  • 6S. Kim, S. Park, W. Chu. An index-based approach for similarity search supporting time warping in large sequence databases. The 17th Int'l Conf. on Data Engineering,Heidelberg, Germany, 2001.
  • 7L. Rabiner, B. H. Juang. Fundamentals of Speech Recognition.Englewood Cliffs, NJ: Prentice-Hall, 1993.
  • 8H. J. L. M. Vullings, M. H. G. Verhaegen, H. B.Verbruggen. ECG segmentation using time warping. In: Proc. of 2nd Int'l Symposium on Advances in Intelligent Data Analysis,1997. 275--285.
  • 9D. J. Berndt, J. Clifford. Using dynamic time warping to find patterns in time series. Working Notes of the Knowledge Discovery in Databases Workshop, Seatle, WA, 1994.
  • 10D. M. Gavrila, L. Davis. Towards 3-d model-based tracking and recognition of human movement: A multi-view approach. IEEE Int'l Conf. on Automatic Face and Gesture Recognition, Zurich,Switzerland, 1995.

共引文献58

同被引文献176

引证文献16

二级引证文献221

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部