期刊文献+

基于混合算法的多目标配电网重构

下载PDF
导出
摘要 配电网重构是配电管理系统的重要内容,从本质上讲,它是一个非线性组合优化问题,若采用传统的遗传算法处理,由于其易于陷入局部最优解和随着配电网规模的扩大搜索效率低的问题,难以得到理想结果。提出一种混合算法来处理配电网重构问题,根据遗传算法和粒子群算法各自的原理特点,将遗传算法和粒子群算法相结合,充分地利用粒子群算法的快速性、随机性、全局收敛性,较好地解决了遗传算法用于配电网重构时的缺点和不足。理论分析和算例表明,该方法高效可行,适合配电网自动化的实际应用要求。 Distribution network reconfiguration is an important aspect of distribution management system, and in essence, it is a non - linear combinatorial optimization problem. If using the traditional genetic algorithm to deal with it, because it is prone to fall into local optimal solution and due to the low search efficiency with the expansion of distribution network, it is difficult to obtain the desired result. A hybrid algorithm is presented to deal with the issues of distribution network reconfiguration based on the respective characteristics of genetic algorithm and particle swarm optimization algorithm, which combines the ge- netic algorithm and the particle swarm optimization algorithm, and fully uses the advantages of particle swarm optimization al- gorithm such as fast, stochastic and global convergence, so as to better solve the shortcomings and deficiencies when the genet- ic algorithm is applied in distribution network reconfiguration. Theoretical analysis and the examples show that the proposed method is feasible and efficient, and it well meets the requirements of the actual distribution automation.
出处 《四川电力技术》 2010年第1期74-78,共5页 Sichuan Electric Power Technology
关键词 配电网重构 遗传算法 粒子群算法 distribution network reconfiguration genetic algorithm particle swarm optimization algorithm
  • 相关文献

参考文献9

  • 1Fan J Y, Zhang L, McDonald J D. Distribution Network Reconfiguration: Single Loop Optimization [ J ]. IEEE Trans on Power Systems, 1996, 11 (3) : 1643 - 1647.
  • 2Sarma N D R, P rakasa Rao K S. A New 0 - 1 Integer Programming Method of Feeder Reconfiguration for Loss Mini- mization in Distribution Systems [ J ]. Electric Power System s Research, 1995, 5 (22) : 125 - 131.
  • 3ShirmohammadiD, Hong H W. Reconfiguration of Electric distribution Networks for Resistive Line Losses Reduction [J]. IEEE Trans on Power Delivery, 1989, 4(2) : 1492 - 1498.
  • 4Civanlar S, Grainger J J , Yin H, et al. Distribution Feeder Reconfiguration for Loss Reduction [J]. IEEE Trans on Power Delivery, 1988, 3 (3) : 1217 - 1223.
  • 5张步涵,沙立华,曾次玲.基于随机生成树的配电网重构模拟退火算法[J].华中科技大学学报(自然科学版),2005,33(6):76-79. 被引量:15
  • 6Nara K, Shiose A , Kitagaw aM, et al. Implementation of Genetic Algorithm for Distribution Systems Loss Minimum Reconfiguration [ J ]. IEEE Trans on Power systems, 1992, 7 (3) : 1044- 1051.
  • 7黄健,张尧,李绮雯.蚁群算法在配电网重构的应用[J].电力系统及其自动化学报,2007,19(4):59-64. 被引量:30
  • 8Hirotaka Yoshida, Kenichi Kwata, Yoshikazu Fukuyama. A Particle Swarm Optimization for Reactive Power and Voltage Control Considering Voltage Security Assessment [ J ]. IEEE Trans on Power Systems ,2000,15 (3) : 1232 - 1239.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization [ C ]. IEEE international Conference on Neural Network, Perth, Australia, 1995.

二级参考文献15

  • 1段海滨,王道波,朱家强,黄向华.蚁群算法理论及应用研究的进展[J].控制与决策,2004,19(12):1321-1326. 被引量:211
  • 2黄纯华,邢卫国,余贻鑫.配电网络的再组合算法[J].天津大学学报,1996,29(3):376-382. 被引量:6
  • 3Goswami S K, Basu S K. A new algorithm for the reconfiguration of distribution feeders for loss minimization[J]. IEEE Transaction on PWRD, 1992, 7(3): 1 484-1 491.
  • 4Civanlar S, Grainger J J, Yin H, et al. Distribution feeder reconfiguration for loss reduction[J]. IEEE Transaction on PWRD, 1988, 3(3): 1 217-1 223.
  • 5Nara K,Shiiose A,Kitagwa M,et al.Implementation of genetic algorithm for distribution systems loss minimum reconfiguration[J].IEEE Trans on Power Systems,1992,7(3):1044-1051.
  • 6Chiang H D,Jean Jumeau R.Optimal network reconfiguration in distribution systems.Part Ⅰ:A new formulations and solution methodology[J].IEEE Trans on Power Delivery,1990,5(4):1902-1909.
  • 7Chiang H D,Jean Jumeau R.Optimal network reconfiguration in distribution systems.Part Ⅱ:Solution,algorithm and numerical results[J].IEEE Trans on Power Dlivery,1990,5(3):1568-1574.
  • 8王树禾.图论[M].北京:科学出版社,2005.
  • 9李士勇,陈永强,李研,等.蚁群算法及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005.
  • 10Dorigo M,Gambardella L M.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans on Evolutionary Computation,1997,1(1):53-66.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部