期刊文献+

基于文化差分进化算法的最小二乘支持向量机及QSAR建模 被引量:2

Least Square Support Vector Machine Based on Cultural Differential Evolution Algorithm and Its Application to QSAR Modeling
下载PDF
导出
摘要 针对最小二乘支持向量机最佳算法参数难以确定的缺陷,提出了基于文化差分进化算法的最小二乘支持向量机(Cultural Differential evolution Algorithm Least Square Support Vector Machine,CDE-LSSVM)。该算法通过新型的文化差分进化算法优化确定最小二乘支持向量机核宽度参数和惩罚系数,建立具有良好预测性能的模型。同时,针对药物定量构效关系(Quantitative Structure-Activity Relationships,QSAR)模型具有高度非线性、变量之间存在相关性的特征,采用CDE-LSSVM建立HIV-1蛋白酶抑制剂的药物定量构效关系模型。模型具有很好的拟合精度与预测精度,且优于最小二乘支持向量机、BP神经网络和径向基神经网络。 In order to obtain the best parameters of least square support vector machine(LS-SVM), a novel least square support vector machine algorithm integrating with cultural differential evolution (CDE- LSSVM) is proposed. In CDE-LSSVM, CDE algorithm is used to optimize the parameters of kernel width and the factor of punishment so as to obtain the model with better forecasting performance. Further, by considering that quantitative structure-activity relationships (QSAR) model is of high nonlinearity and has relativity between independent variables, CDE-LSSVM is applied to develop HIV-1 protease inhibitors QSAR model. In order to illustrate the performance of CDE-LSSVM model, LS-SVM, back-propagation neural networks and radial basis function neural network are employed respectively to develop the QSAR models. The simulation results show that CDE-LSSVM model is of better performance of fitting and forecasting.
出处 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期121-125,共5页 Journal of East China University of Science and Technology
基金 国家自然科学基金项目(20776042) 国家863项目(2007AA04Z164) 曙光计划项目(09SG29) 博士点基金(20090074110005) 上海市重点学科建设项目(B504)
关键词 文化差分进化算法 最小二乘支持向量机 药物定量构效关系 HIV-1蛋白酶抑制剂 cultural differential evolution algorithm least square support vector machine quantitative structure-activity relationships HIV-1 protease inhibitors
  • 相关文献

参考文献14

  • 1Vapnik V N. The Nature of Statistical Learning Theory [M]. New York: Springer-Verlag, 1995.
  • 2Cortes C, Vapanik V N. Support-vector networks [J]. Machine Learning, 1995,20:273-297.
  • 3Suykens J A K, Vandewalle J. Least squares support vector machines classifiers [J]. Neural Networks Letters, 1999,19 (3) :293-300.
  • 4阎辉,张学工,马云潜,李衍达.基于变异函数的径向基核函数参数估计[J].自动化学报,2002,28(3):450-455. 被引量:23
  • 5刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 6林碧华,顾幸生.基于差分进化算法-最小二乘支持向量机的软测量建模[J].化工学报,2008,59(7):1681-1685. 被引量:17
  • 7Beeerra R L, Coello C A. A cultural algorithm with differential evolution to Solve constrained optimization problems [J]. IBERAMIA, 2004, 3315:881-890.
  • 8Nello Cristianini, John Shawe-Taylor . An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. England: Press of the University of Cambridge, 2000.
  • 9Reynolds R G. An introduction to cultural algorithms [C]// Proceedings of the Third Annual Conference on Evolutionary Programming. Singapore : World Scientific Publishing, 1994 : 131-136.
  • 10Ali M M, Torn A. Population set based global optimization algorithms: Some modifications and numerical studies [ J]. Computers & Operations Research, 2004, 31 (10) : 1703- 1725.

二级参考文献41

  • 1郑小霞,钱锋.基于PCA和最小二乘支持向量机的软测量建模[J].系统仿真学报,2006,18(3):739-741. 被引量:33
  • 2刘瑞兰,牟盛静,苏宏业,褚健.基于支持向量机和粒子群算法的软测量建模[J].控制理论与应用,2006,23(6):895-899. 被引量:31
  • 3周艳平,顾幸生.差分进化算法研究进展[J].化工自动化及仪表,2007,34(3):1-6. 被引量:72
  • 4刘波,王凌,金以慧.差分进化算法研究进展[J].控制与决策,2007,22(7):721-729. 被引量:291
  • 5Price K. Differential Evolution,, A Fast and Simple Numerical Optimizer [A]. 1996 Biennial Conf of the North American Fuzzy Information Processing Sociey[C]. New York, 1996:524-527.
  • 6Price K. Differential Evolution vs, the Functions of the 2nd ICEO [A]. IEEE Int Conf on Evolutionary Computation [C]. Indianupolis, 1997:153-157.
  • 7Ji-Pyng Chiou, Feng-Sheng Wang. A Hybrid Method of Differential Evolution with Application to Optimal Control Problems of a Bioprocess System[A]. IEEE Int Conf on Evolutionary Computation Proceedings[C]. New York, 1998:627-632.
  • 8Junhong Liu, Jouni Lampinen. A Fuzzy Adaptive Differential Evolution Algorithm[A]. IEEE Region 10 Conf on Computers, Communications, Control and Power Engineering [C]. Beijing, 2002 : 606-611.
  • 9Rainer S, Price K. Differential Evolution - A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces [J]. J of Global Optimization,1997,11 (4) : 341-359.
  • 10HOLLAND J H.Adaptation in Natural and Artificial Systems[M].Michigan:The University of Michigan Press,1975.

共引文献164

同被引文献25

  • 1Zhendong Song,Meijing Wang,Yang Ge,Xue-Ping Chen,Ziyang Xu,Yang Sun,Xiao-Feng Xiong.Tyrosine phosphatase SHP2 inhibitors in tumor-targeted therapies[J].Acta Pharmaceutica Sinica B,2021,11(1):13-29. 被引量:16
  • 2张正凯,盛四清,田文树.基于改进遗传算法的地区电网无功优化[J].电力科学与工程,2005,21(1):73-75. 被引量:8
  • 3Arjona, rjnna Darring ton H. A hybrid arlicia neural .elworkgenetic algorithm apprnach to oft-line swhchin nperalions for the pthm- zation of e[eetrka pover systems [C]. Proceeding s of the 31 st Inter society Energy Conersiolt Engineering Conference. 1996,4 (4) :2286 - 2290.
  • 4l,uan W, ling M, Daniel J. Genetic algorithm tor supply rest oration and optimal load sheddilg in power system distribution networks [ J ]. lEE Proceedings-Generation,Transmission and Distribution,2002,49(2) :145 -151.
  • 5Robert R G. An Introduction to Cultural Algorithms[ C]. Proc. of the 3th Annual Conf. on Evolution Programming. Singapore:World Scientific Publishing, 1994 : 131 - 136.
  • 6Store R, Price K. Differential evolution:a simple and efficient adaptive scheme for global optimization over continuous spaces [ R ]. Berkeley: University of California,2006.
  • 7Swagatam Das,Ajith Abraham et al. Differential Evolution Using a Neighborhood-Based Mutation Operator[ J ]. IEEE Transactions on evolu- tionary computation ,2009,13 ( 3 ) :526 - 553.
  • 8Ricardo Landa Becerra,Carlos A Coello Coello. A cultural algorithm with differential evolution to solve constrained optimization problems[ J]. Lecture Notes in Computer Science,2004,3315 : 881 - 891.
  • 9Reynolds R G, Zhu Shinin. Knowledge-based function optimization using fuzzy cultural algorithms with evolutionary programming[ J ]. IEEE Transactions on Systems, Man, and Cybernetics, Part B : Cybernetics,2001,31 ( 1 ) : 1 - 18.
  • 10Yah W, Lu S,Yu D C. A novel optimal reactive power dispatch method based on an improved Hybrid evolutionary programming technique [ J ]. IEEE Trans on Power Systems,2004,19 (2) :913 - 918.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部