期刊文献+

多核CPU的海量点云并行kNN算法 被引量:10

k-Nearest Neighbors Algorithm for Large Scale Point Clouds Data with Multi-Core CPU
下载PDF
导出
摘要 提出基于多核CPU的海量点云k最近邻(kNN)快速搜索算法。该算法先将点云数据按格网方式进行组织存储于外存;在搜索kNN点时,从搜索点所在的块向外扩张搜索;在多核CPU环境下采用多线程模式进行数据的内外存调度和kNN点搜索。当内存达到设定上限时,采用距离搜索点最远策略释放内存,降低内外存数据交换的频率。将该方法应用于基于kNN的滤波和格网化方法中,处理速度显著提高。 A fast k-nearest neighbors (kNN) algorithm has been proposed for large scale point clouds data with multi-core CPU. The point clouds data is arranged by grid and stored in external memory in the first; the searching starts form its own inner block area to the outer block when finding for the k nearest points for one point; internal-external memory scheduling and k-nearest neighbors searching are performed by multi-core CPU with multi thread. The memory of the farthest blocks from current point will be released when reaching the limitation of the memory. In this way, the exchange ratio can be reduced. The processing speed is improved significantly when applying this algorithm in kNN based filtering and gridding methods.
出处 《测绘科学技术学报》 北大核心 2010年第1期46-49,共4页 Journal of Geomatics Science and Technology
基金 国家863计划资助项目(2006AA12Z101)
关键词 机载激光雷达 海量点云 k最近邻 多核CPU 并行算法 LiDAR large scale point clouds k-nearest neighbors multi-core CPU parallel algorithm
  • 相关文献

参考文献12

  • 1WEHR A, LOHR U. Airborne laser scanning-an introduction and overview[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1999,54(2/3):68-82.
  • 2蒋晶珏,张祖勋,明英.复杂城市环境的机载Lidar点云滤波[J].武汉大学学报(信息科学版),2007,32(5):402-405. 被引量:38
  • 3CLARKSON K L. Fast algorithm for the all nearest neighbors problem[C]//Proceedings of the 24th IEEE annual symposium on foundations of computer science. Tucson, AZ, 1983:226-232.
  • 4VAIDYA P. An O (nlog n) algorithm for the all-nearestneighbors Problem[J]. Discrete and Computational Geometry, 1989,4(1) :101-115.
  • 5HJALTASON G, SAMET H. Distance browsing in spatial databases[J]. ACM Transactions on Database Systems (TODS), 1999,24(2) :265-318.
  • 6ROUSSOPOULOS N, KELLEY S, VINCENT F. Nearest neighbor queries[C]. ACM New York, NY, USA, 1995: 71-79.
  • 7WAND M, BERNER A, BOKELOH M, et al. Processing and interactive editing of huge point clouds from 3D scanners[J]. Computers & Graphics, 2008,32(2): 204-220.
  • 8ARYA S, MOUNT D M, NETANYAHU N S, et al. An optimal algorithm for approximate nearest neighbor searching fixed dimensions[J]. Journal of the ACM, 1998, 45 (6) : 891-923.
  • 9SANKARANARAYANAN J, SAMET H, VARSHNEY A. A fast all nearest neighbor algorithm for applications involving large point-clouds[J]. Computers &Graphics, 2007,31(2) :157-174.
  • 10PLAKU E, KAVRAKI L E. Distributed computation of the knn graph for large high-dimensional point sets[J]. Journal of Parallel and Distributed Computing, 2007,67 (3) : 346-359.

二级参考文献67

  • 1张祖勋 张剑清.数字摄影测量学[M].武汉:武汉大学出版社,2001..
  • 2Clark James H.The geometry engine:A VLSI geometry system for graphics[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Boston,1982.127~133
  • 3Fuchs Herry,Poulton John.Pixel-planes:A VLSI-Oriented design for a raster graphics engine[J].VLSI Design,1981,2(3):20~28
  • 4Eyles John,Austin John,Fuchs Henry,et al.Pixel-plane 4:A summary,advances in computer graphics hardware II[A].Eurographic Seminars Tutorials and Perspectives in Computer Graphics,New York:Springer-Verlag,1988.183~208
  • 5Fuchs Herry,Israel Laura,Poulton John,et al.Pixel-planes 5:A heterogeneous multiprocessor graphics system using processor-enhanced memories[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Boston,1989.79~88
  • 6http://www.nvidia.com/object/gpu.html[OL]
  • 7http://developer.nvidia.com/[OL]
  • 8http://www.ati.com/developer/[OL]
  • 9http://www.gpgpu.org[OL]
  • 10Joo Luiz Dihl Comba,Dietrich Carlos A,Pagot Christian A,et al.Computation on GPUs:From a programmable pipeline to an efficient stream processor[J].Revista de Informática Teóricae Aplicada,2003,X(2):41~70

共引文献263

同被引文献111

引证文献10

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部