期刊文献+

一种基于N-最优阶次序列的无线传感器网络节点定位方法 被引量:12

A New Localization Method for Wireless Sensor Network Nodes Based on N-best Rank Sequence
下载PDF
导出
摘要 基于阶次序列的无线传感器网络(Wireless sensor networks,WSN)定位方法是一种新颖的高精度定位方法,该方法将定位空间划分为不同的子区域,每个子区域用一条阶次序列唯一标识.但该方法存在区域边界节点定位误差较大且不能保证平均定位误差最优.提出了一种基于N-最优阶次序列的节点定位方法.首先基于无线信号衰减模型产生虚拟测试点,以参考点为样本,通过随机采样确定最优N值,然后选择阶次位于前N位的序列所表示的子区域,对目标进行加权定位.文中完成了100个节点的仿真实验、15个ZigBee网络硬件节点的室外实验以及10个ZigBee硬件节点的防空洞模拟矿井应用实验.结果表明,本文方法有效地降低了平均定位误差,并改善了边界节点的定位精度. Rank sequence-based localization method is a novel and high-accuracy wireless sensor networks (WSN) localization technique. The localization space is divided into distinct sub-regions and each is uniquely identified by a rank sequence. However, the localization errors for nodes on the edge of a region are rather large and they are not optimal in view of average localization errors. This paper proposes a new N-best rank sequence localization method. The best value N is first achieved using the random sampling for reference nodes based on a wireless channel fading model, and the coordinates for the target are then computed through selecting the top N rank sequences. We have conducted the simulation with 100 nodes, the outdoor experiment with 15 ZigBee physical nodes, and the air-raid shelter tunnel test with 10 ZigBee nodes. All the results have shown that our method reduces the average localization errors and improves the localization accuracy for nodes on the edge of the region.
出处 《自动化学报》 EI CSCD 北大核心 2010年第2期199-207,共9页 Acta Automatica Sinica
基金 国家高技术研究发展计划(863计划)(2006AA04Z208)资助~~
关键词 无线传感器网络 定位 信号强度指示 阶次序列 Wireless sensor network (WSN) localization received signal strength indicator rank sequence
  • 相关文献

参考文献10

  • 1Michel D, Toggenburger D. Sensor Network Soccer [Ph. D. dissertation], University of Applied Sciences Rapperswil HSR, Switzerland, 2006.
  • 2Capkun S, Hubaux J P. Secure positioning of wireless devices with application to sensor networks. In: Proceedings of IEEE the 24th Annual Joint Conference of the Computer and Communications Societies. Miami, USA: IEEE, 2005. 1917-1928.
  • 3Ji X, Zha H Y. Sensor positioning in wireless Ad-Hoc sensor networks using multidimensional scaling. In: Proceedings of IEEE the 23rd Annual Joint Conference of the Computer and Communications Societies. Hong Kong, China: IEEE, 2004. 2652-2661.
  • 4周祖德,胡鹏,刘泉,李方敏.一种基于MDS的无线传感器网络快速定位算法[J].传感技术学报,2007,20(10):2303-2307. 被引量:16
  • 5Yedavalli K, Krishnamachari B. Sequence-based localization in wireless sensor networks. IEEE Transactions on Mobile Computing, 2008, 7(1): 81-94.
  • 6de Berg M, Cheong O, van Kreveld M, Overmars M. Computational Geometry: Algorithms and Applicationss (Second Edition). Berlin: Springer, 2000. 165-182.
  • 7William H P, Brian P F, Saul A T, Wiliam T V. Numerical Recipes in C: The Art of Scientific Computing (Second Edition). Cambridge: Cambridge University Press, 1992.
  • 8Rappaport T S. Wireless Communications: Principles and Practice (Second Edition). New York: Prentice Hall, 2000. 139-140.
  • 9Pei Z M, Deng Z D. A distributed location algorithm for underground miners based on rescue robot and coal-mining wireless sensor networks. In: Proceedings of IEEE International Conferences on Cybernetics and Intelligent Systems and Robotics Automation and Mechatronics. Chengdu, China: IEEE, 2008. 848-888.
  • 10Estrin D, Sayeed A, Srivastava M. Tutorial "wireless sensor networks" [Online], available: http://nesl.ee.ucla.edu/ tutorials/mobicom02/, February 12, 2009.

二级参考文献8

  • 1于宁,万江文,吴银锋.无线传感器网络定位算法研究[J].传感技术学报,2007,20(1):187-192. 被引量:51
  • 2[3]Yi Shang,Ruml W.,Ying Zhang,et al.Localization from Mere Connectivity[C]// MobiHoc'03,Annapolis,Maryland,USA,2003:201-210.
  • 3[4]Yi Shang,Ruml W.Improved MDS-Based Localization[C]// INFOCOM'04,Hong Kong,China,2004:2640-2651.
  • 4[5]Cheung K W,So H C.A Multidimensional Scaling Framework for Mobile Location Using Time-of-Arrival Measurements[J].IEEE Transactions on signal processing,2005,53(2):460-570.
  • 5[6]Vin de Silva,Joshua B.Tenenbaum.Global Versus Local Methods in Nonlinear Dimensionality Reduction.Neural Information Processing Systems 15 (NIPS'02)[C]// Vancouver,Canada,2003:705-712.
  • 6[7]Vin de Silva,Joshua B.Tenenbaum.Sparse Multidimensional Scaling using Landmark Points[R].Technical Report CA 94305-2125,California:Stanford University,2004.
  • 7[8]Platt J C.FastMap,MetricMap,and Landmark MDS are all Nystrm Algorithms[C]// 10th International Workshop on Artificial Intelligence and Statistics,Barbados,2005:261-268.
  • 8[9]Bin Luo,Hancock E.R.Feature Matching with Procrustes Alignment and Graph Editing[C]// 7th International Conference on Image Processing and Its Applications,Manchester,UK,1999:72-76.

共引文献15

同被引文献89

引证文献12

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部