期刊文献+

基于核方法的一种新的模糊支持向量机 被引量:6

A New Fuzzy Support Vector Machine Based on Kernel Method
下载PDF
导出
摘要 由于支持向量机对样本中的噪声及孤立点非常敏感,因而在解决非线性、高维数、不确定问题时,使用模糊支持向量机比使用支持向量机的效果要好。在模糊支持向量机中,模糊隶属度函数的建立是关键也是难点。一般,模糊隶属度是在原始空间中根据样本点的相互距离及到类中心的距离创建的。考虑样本间的密切度,在特征空间中利用混合核函数建立一种新的模糊隶属度。通过试验比较多项式核函数、高斯径向基核函数与混合核函数,可看出新方法表现出了它的优越性。 Support vector machine is sensitive to the noises and outliers in the training samples, so fuzzy support vector machine precede support vector machine in solving the problem of non - linearity, high dimension and uncertainty. The choice of fuzzy membership is the key and difficulty for fuzzy support vector. Generally, the fuzzy membership is established according to the distance of between sample points and its cluster center. A new fuzzy membership function is established, considering the relation among samples using mixed kernel function,based on mixed kernel function. The experiments show that fuzzy support vector machine with the new fuzzy membership is superior through comparing mixed kernel function with Polynomial kernel function and Gaussian RBF kernel function.
出处 《计算机技术与发展》 2010年第2期9-11,15,共4页 Computer Technology and Development
基金 国家自然科学基金项目(10371106 10471114) 江苏省高校自然科学基金项目(04KJB110097 08KJB520003) 南京邮电大学攀登计划(NY207064)
关键词 模糊支持向量机 模糊隶属度 混合核函数 fuzzy support vector machine fuzzy membership mixed kernel function
  • 相关文献

参考文献10

  • 1Zhu Shuxian, Zhang Renjie. Research for Face Recognition Base on Mixed Kernel Function [ M ]. China: [ s. n. ], 2008: 1395 - 1399.
  • 2Hao Tang, Liang Sheng. Fuzzy Support Vector Machine With a New Fuzzy Membership Function for Pattern Classification [ C] //Proceedings of the Seventh lmernational Conference on Machine Learning and Cybernetics. Kunming: [s. n. ], 2008: 768 - 773.
  • 3Xia Hong. Feature Selection based on Fuzzy SVM[ C]//Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Jinan,China: [ s. n. ], 2008: 586 - 589.
  • 4Yang Chih - Cheng, Lee Wan - Jui, Lee Shie - Jue. Learning of Kernel Functions in Support Vector Machines[ C]//2006 International Joint Conference on Neural Networks. Sheraton Vancouver Wall Gentre Hotel. Vancouver, BC, Canada: [ s. n. ] ,2006:1150- 1155.
  • 5Tan Ying,Wang Jun. A Support Vector Machine with a Hybrid Kernel and Minimal Vapnik- Chervonenkis Dimension [J ]. IEEE Transactions on Knowledge and Data Engineering, 2004,16(4) : 385 - 395.
  • 6Czajkowska J, Rudzki M, Czajkowski Z. A New Fuzzy Support Vectors Machine for Biomedical Data Classification[C]//30th Annual International IEEE EMBS Conference. Vancouver, British Columbia, Canada: [ s. n. ],2008: 4476 - 4479.
  • 7TSANG E C C, YEUNG D S, CHAN P P K. Fuzzy Support Vector Machines for Solving Two- class problems[ C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics. Xi' an: [ s. n. ],2003 : 1080 - 1083.
  • 8Li Xuehua, Shu Lan. Fuzzy Theory Based on Support Vector Machine Classifier [ C]//Fifth International Conference on Fuzzy Systems and Knowledge Discovery. Jinan, China: [s. n. ] ,2008:600 - 604.
  • 9Lin C F, Wang S D. Fuzzy Support Vector Machines [ J ]. IEEE Transactions on Neural Networks, 2002,13 ( 12 ) : 466 - 471.
  • 10Soria E, Martin J, Camps G, et al. A low complexity fuzzy activation function for artificial neural networks [ J ]. IEEE Trans Neural Networks,2003,14(6) : 1576 - 1579.

同被引文献52

引证文献6

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部