期刊文献+

基于概率密度梯度方向的角点重定位技术 被引量:1

Corner relocation based on density gradient direction
下载PDF
导出
摘要 由于各种外界因素的影响,角点检测算法检测的角点可能出现位置偏移。在分析该现象的基础上,提出对角点进行重新的定位。首先,通过计算角点的二阶模板值来进行角点模糊定位;其次,引入像素点的概率密度梯度方向,通过比较角点和角点邻域内的像素点的概率密度梯度方向的关系来判断错误角点,并找出所有的候选替代点;最后,根据角点和候选像素点之间的关系,寻找出新的角点。通过实验对比发现该算法能正确地对发生位置偏移的角点进行重新定位。 As a result of the impact of external factors, comers detected by corners detection algorithm may be offset. Based on the analysis of this phenomenon, this paper proposed a new algorithm for corners relocation. Firstly, through calculating the second-order template value for every corner, the fuzzy corner relocation was carried out; secondly, the density gradient direction of pixel was introduced. Comparing the density gradient directions of the comers and the neighborhood pixels of the corners, the wrong comers were determined precisely and all candidates were found; finally, according to the relationship between the corners and the candidate pixels, new corners was found. Experimental results show that the algorithm can accurately relocate the wrong corners.
作者 汪旭东 贾渊
出处 《计算机应用》 CSCD 北大核心 2010年第2期359-361,366,共4页 journal of Computer Applications
基金 国家863计划项目(2008AA10Z211)
关键词 概率密度梯度方向 模糊定位 角点重定位 density gradient direction fuzzy location positioning comers relocation
  • 相关文献

参考文献10

二级参考文献39

  • 1闫成新,桑农,张天序.基于小波变换的图像过渡区提取与分割[J].计算机工程与应用,2004,40(18):29-31. 被引量:10
  • 2章毓晋.过渡区和图象分割[J].电子学报,1996,24(1):12-17. 被引量:54
  • 3张登荣,刘辅兵,俞乐,蔡志刚,邓超.基于Harris算子的遥感影像自适应特征提取方法[J].国土资源遥感,2006,18(2):35-38. 被引量:15
  • 4赵文彬,张艳宁.角点检测技术综述[J].计算机应用研究,2006,23(10):17-19. 被引量:85
  • 5Ziou D, Tabbone S. Edge detection techniques-- An overview. Pattern Recognition and Image Analysis, 1998, 8(4): 537-559.
  • 6Prewitt J M S. Object enhancement and extraction//Picture Processing and Psychopictorics. New York: Academic Press, 1970.
  • 7Lyvers E P, Mitchell O R. Precision edge contrast and orientation estimation. IEEE Transactions on Pattern Analysis and machine Intelligence, 1988, 10(6): 927-937.
  • 8Marr D, Hildreth E. Theory of edge detection. Proceedings of the Royal Society of London, Series B: Biological Sciences, 1980, 207(1167): 187-217.
  • 9Canny J. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, 8(6): 679-698.
  • 10Ziou D. Line detection using an optimal IIR filter. Pattern Recognition, 1991, 24(6) : 465-478.

共引文献205

同被引文献6

  • 1TORR P H S.A structure and motion toolkit in mat-lab[R/OL].UK:Technical Report MSR-TR-2002-56,Microsoft Research,7JJ Thomson Avenue,Cam-bridge,CB3 0FB,UK,http://research.Microsoft.Com/philtorr/,2002:1-7.
  • 2FAUGERAS O D,TOSCANI G.The calibration prob-lem for stereo[C].Miam Beach,Florida:Proc.IEEEConference on Computer Vision and Pattern Recogni-tion,1986:15-20.
  • 3HARRIS C,STEPHENS M.A combined corner andedge detector[C].Manchester:Proceedings of theFourth Alvey Vision Conference.Manchester,UK:Alvey Vision Conference,1988:147-151.
  • 4TISSAINAYAGAM,SUTER D.Assessing the per-formance of corner detectors for Point feature track-ing applications[J].Image and Vision Computing,2004,22(8):663-679.
  • 5祁蒙,刘鑫,姜学东.灰度梯度自适应阈值二值化算法的FPGA实现[J].激光与红外,2008,38(9):958-960. 被引量:4
  • 6王德鑫,张茂军.四路摄像头分组重建的多触点定位方法[J].电子与信息学报,2010,32(2):495-499. 被引量:6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部