期刊文献+

使用GPU技术的数据流分位数并行计算方法 被引量:2

Parallel computing method of data stream quantiles with GPU
下载PDF
导出
摘要 数据流实时、连续、快速到达的特点决定了数据流的实时处理能力。在处理低维数据流时经常使用分位数信息来描述数据流的统计信息,利用图形处理器(GPU)的强大计算能力和高内存带宽的特性计算数据流分位数信息,提出了基于统一计算设备架构(CUDA)的数据流处理模型和基于该模型的数据流分位数并行计算方法。实验证明,该方法在提供不低于纯CPU分位数算法相同精度的条件下,使数据流分位数的实时计算带宽得到了显著的提高。 The real-time, continuous and rapid arrival properties of data streams decide the real-time processing capability of data stream. Quantiles are commonly used for describing data stream with low dimension distribution. The research focused on mining powerful computing capacity and high memory bandwidth of Graphics Processing Unit (GPU) to compute data stream quantiles, and presented a GPU cooperated parallel processing model of data stream based on Computing Unified Device Architecture (CUDA) as well as parallel computing method of data stream quantiles which increased data stream processing bandwidth remarkably with precision no less than pure CPU algorithm.
出处 《计算机应用》 CSCD 北大核心 2010年第2期543-546,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(50679011)
关键词 统一计算设备架构 通用图形处理器 数据流 分位数 并行计算 Computing Unified Device Architecture (CUDA) general-purpose computing on graphics processing unit data stream quantile parallel computing
  • 相关文献

参考文献12

  • 1BABCOCK B, BABU S, DATAR M, et al. Models and issues in data stream systems[ C]//PODS 2002: Proceedings of 21st ACM Symposiurm on Principles of Database Systems. New York: ACM, 2002:1 - 16.
  • 2BABCOCK B, BABU S, DATAR M, et al. Operator scheduling in data stream systems[ J]. The VLDB Journal, 2004, 12(13) : 333 - 353.
  • 3吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 4ZHUYUN - YUE, SHASHA D. StatStream : Statistical monitoring of thousands of data streams in real time[ C]// Proceedings of the 28th VLDB Conference. Hong Kong: VLDB Endowment, 21302:358 -369.
  • 5GOLAB L, GARG S, TAMEROZSU M. On indexing sliding windows over online data streams [ C]// EDBT 2004, LNCS 2992. Berlin: Springer-Verlag, 2004:712-729.
  • 6杨蓓,黄厚宽.数据流上的分位数近似算法研究[J].计算机研究与发展,2008,45(2):287-292. 被引量:3
  • 7GOVINDARAJU N K, RAGHUVANSHI N, MANOCHA D. Fast and approximate stream mining of quantiles and frequencies using graphics processors[ C]//Proceedings of ACM SIGMOD 2005. New York: ACM, 2005:611-622.
  • 8曹锋,周傲英.基于图形处理器的数据流快速聚类[J].软件学报,2007,18(2):291-302. 被引量:24
  • 9刘伟峰,王智广.细粒度并行计算编程模型研究[J].微电子学与计算机,2008,25(10):103-106. 被引量:10
  • 10Nvidia. NVIDIA CUDA programming guide[ EB/OL]. (2008 - 06) [21308- 06 -07]. http://developer, download, nvidia, com/compute,/ cuda/2_0/NVIDIA_ CUDA_Programming_Guide_2.0. pdf.

二级参考文献75

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2吴恩华.图形处理器用于通用计算的技术、现状及其挑战[J].软件学报,2004,15(10):1493-1504. 被引量:141
  • 3张龙波,李战怀,闫剑锋.一种面向数据流处理的直方图增量维护算法[J].计算机工程,2005,31(14):83-84. 被引量:1
  • 4Babcock B, Babu S, Datar M, Motwani R, Widom J. Models and issues in data streams. In: Popa L, ed. Proc. of the 21st ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems. Madison: ACM Press, 2002. 1~16.
  • 5Terry D, Goldberg D, Nichols D, Oki B. Continuous queries over append-only databases. SIGMOD Record, 1992,21(2):321-330.
  • 6Avnur R, Hellerstein J. Eddies: Continuously adaptive query processing. In: Chen W, Naughton JF, Bernstein PA, eds. Proc. of the 2000 ACM SIGMOD Int'l Conf. on Management of Data. Dallas: ACM Press, 2000. 261~272.
  • 7Hellerstein J, Franklin M, Chandrasekaran S, Deshpande A, Hildrum K, Madden S, Raman V, Shah MA. Adaptive query processing: Technology in evolution. IEEE Data Engineering Bulletin, 2000,23(2):7-18.
  • 8Carney D, Cetinternel U, Cherniack M, Convey C, Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik S. Monitoring streams?A new class of DBMS applications. Technical Report, CS-02-01, Providence: Department of Computer Science, Brown University, 2002.
  • 9Guha S, Mishra N, Motwani R, O'Callaghan L. Clustering data streams. In: Blum A, ed. The 41st Annual Symp. on Foundations of Computer Science, FOCS 2000. Redondo Beach: IEEE Computer Society, 2000. 359-366.
  • 10Domingos P, Hulten G. Mining high-speed data streams. In: Ramakrishnan R, Stolfo S, Pregibon D, eds. Proc. of the 6th ACM SIGKDD Int'l Conf. on Knowledge Discovery and Data Mining. Boston: ACM Press, 2000. 71-80.

共引文献318

同被引文献27

  • 1李东晓.一种支持SIMD指令的流水化可拆分乘加器结构[J].计算机工程,2006,32(7):264-266. 被引量:2
  • 2李成军,周卫峰,朱重光.基于Intel SIMD指令的二维FFT优化算法[J].计算机工程与应用,2007,43(5):41-44. 被引量:11
  • 3AGGARWAL C,PHILIP S.A survey of uncertain data algorithms and applications[J].Knowledge and Data Engineering,2009,21(5):609-623.
  • 4BUCK I.GPU Computing:programming a massively parallel processor[C]//Proc of International Symposium on Code Generation and Optimization.San Jose:IEEE Press,2007:118-135.
  • 5PHARR M,FERNANDO R.Gpu gems 2:programming techniques for high-performance graphic sand general-purpose computation[M].Boston:Addison-Wesley Press,2005.
  • 6ROBLER F,TEJADA E,FANGMEIER T.GPU-based multi-volume rendering for the visualization of functional brain images[C]//Proc of SimVis.Magdeburg:SCS Press,2006:305-318.
  • 7RYOO S,RODRIGUES C I.Optimization principles and application performance evaluation of a multithreaded GPU using CUDA[C]//Proc of the 13th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.New York:ACM Press,2008:73-82.
  • 8GOLAB L,TAMER M.Processing sliding window multi-joins in continuous queries over data streams[C]//Proc of the 29th on Very Large Data Bases Conference.Berlin:VLDB Endowment,2003:500-511.
  • 9DAS A,GEHRKE J,RIEDEWALD M.Approximate join processing over data streams[C]//Proc of SIGMOD Conference on Management of Data.San Diego:ACM Press,2003:40-51.
  • 10JAYRAM T S,McGREGOR A,MUTHUKRISHNAN S.Estimating statistical aggregates on probabilistic data streams[C]//Proc of the 26th ACM Symposium on Principles of Database Systems.New York:ACM Press,2007:243-252.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部