期刊文献+

SIFT和旋转不变LBP相结合的图像匹配算法 被引量:112

An Image Matching Algorithm Based on Combination of SIFT and the Rotation Invariant LBP
下载PDF
导出
摘要 SIFT算法是性能最好、应用最广泛的基于局部特征的图像匹配算法,但其计算复杂度高.为此,提出一种SIFT和旋转不变LBP相结合的图像匹配算法,以提高SIFT算法的速度.首先利用SIFT关键点检测方法在2幅待匹配图像上分别检测关键点,得到2个关键点集;然后计算每个关键点周围图像区域的旋转不变LBP特征,并将其作为该关键点的描述;最后采用基于关键点最近邻距离比值的匹配策略,找出2个关键点集之间存在匹配关系的关键点对.实验结果表明,文中算法对结构内容图像的匹配性能与SIFT算法相当,运算速度比SIFT算法大为提高. SIFT (scale invariant feature transform)is one of the most robust and the widely used image matching algorithms based on local features. However, its computational complexity is high. Aiming at speeding up the SIFT computation, we present an image matching algorithm by combining SIFT and the rotation-invariant LBP (local binary patterns). Firstly,two sets of keypoints are extracted from the two images for matching by applying the SIFT algorithm~ Secondly, each keypoint is described by the rotation-invariant LBP patterns, which are computed from the image patch centered at the keypoint; Finally,the matching pairs between the two sets of keypoints are determined by using the nearest neighbor distance ratio based matching strategy. The experimental results show that the proposed SIFT+LBP algorithm is more rapid than the standard SIFT algorithm while the performance is favorably compared to the standard SIFT algorithm when matching among structured scene images.
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2010年第2期286-292,共7页 Journal of Computer-Aided Design & Computer Graphics
关键词 图像匹配 SIFT 旋转不变LBP image matching SIFT the rotation invariant local binary patterns
  • 相关文献

参考文献8

  • 1Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 2Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 3Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 4Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 5Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 6Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 7孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 8Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.

二级参考文献2

  • 1Paul Viola,Michael J. Jones. Robust Real-Time Face Detection[J] 2004,International Journal of Computer Vision(2):137~154
  • 2Robert E. Schapire,Yoram Singer. BoosTexter: A Boosting-based System for Text Categorization[J] 2000,Machine Learning(2-3):135~168

共引文献19

同被引文献1021

引证文献112

二级引证文献748

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部