期刊文献+

在癌症分类中基于分层抽样的神经网络集成算法

A neural network ensemble method based on the stratified sampling in tumor classification
下载PDF
导出
摘要 在基因表达谱数据的分析中,针对有效合理地选择特征基因集的问题,本文将分层抽样技术引入特征基因选择,提高特征基因集的分类能力。以神经网络作为分量分类器,神经网络集成进行分类预测。并在结肠癌数据集上进行实验,实验结果表明该方法能有效地降低特征基因集选择的复杂性,提高对于未知样本的分类预测效果。 With introducing the stratified sampling into the character gene's selection for the problem of choosing gene as charater gene group effectively and rationaly in the analysis of the expression profiles, a feature selection method based on the stratified sam- piing was proposed for improving the classification ability of character genc group. And a network ensemble which neural networks was taken as the individual classification is employed to classify the samples. In the end, this method was experimentize in the colon tumor dataset, and the experiments had shown this method can reduce the complexity of the feature selection,and enhance the effec- tiveness for unkown sample's classification.
出处 《微计算机信息》 2010年第4期178-180,共3页 Control & Automation
关键词 神经网络集成 基因表达谱 偏度 分层抽样 neural network ensemble gene expression porfiles skewness stratified sampling
  • 相关文献

参考文献7

  • 1Huiqing L,Jinyan L, Limsoon W.A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns[J].Genome Informatics 13:51-60(2002).
  • 2D.P.Berrar, C.S.Downes,W.Dubitaky. Multiclass cancer classification usig gene expression profiling and probabilistic neural networks.Pacific symposium on Biocomputing 8:5-16(2003).
  • 3李霞,张田文,李丽,郭政.决策树特征基因选择方法对SVM有效性的研究[J].中国生物医学工程学报,2004,23(1):66-72. 被引量:15
  • 4Mineichi K,jack S.Comparison of algorithms that sellect features for pattern classifiers[J].Pattern Recognition,2000,33:25-41.
  • 5白冬婴,马飞,张宏达,陈朝霞.基于粗糙集的神经网络的目标识别应用[J].微计算机信息,2008(7):192-193. 被引量:2
  • 6Amadou Toure and Mitra Basu Application of Neural Network to Gene Expression Data for Cancer Classfication [C]Neural Networks, 2001. Proceedings. UCNN apos;01. International Joint Conference on Volume 1, Issue , 2001 Page(s):583 - 587 vol.1.
  • 7Bing Liu, Qinghua Cui, Tianzi jiang* and Songde Ma A combinational feature selection and ensemble neural network method for classification of gene expression data BMC Bioinformatics 2004, 5:136 doi:10.1186/1471-2105-5-136.

二级参考文献11

  • 1白秀玲,王平,普杰信.一种粗糙集值约简算法及其应用[J].微计算机信息,2006,22(11X):207-209. 被引量:15
  • 2史忠值.神经计算[M].电子工业出版社,1993..
  • 3[1]DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomicscale[J]. Science,1997,278:680-685.
  • 4[2]Golub TR, et al. Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring[J]. Science, 1999,286:531-537.
  • 5[3]Eric P. Xing, Michael I. Joran, Richard M. Karpy. Feature Selection for High-Dimensional Genomic Microarray Data, International conference on machine learning[R]. 2001.
  • 6[4]John G, Kohavi, Pfleger K. Irrelevant features and the subset selection problem in W.W.Cohen & H.Hirsh(eds), Machine Learning: Proceedings of the 11th International Conference[R]. CA,1994,121-129.
  • 7[5]Xia Li, et al. An ensemble method for gene discovery based on DNA microarray data[J]. SCIENCE IN CHINA(Series C).2004,47(1).
  • 8[6]Cristianini N, Shawe-Taylor J. An Introduction to Spport Vector Machines[M]. Cambridge University Press. Cambridge. www.support-vector.net.
  • 9[7]Brown, MPS, Grundy WN, Lin D, et al. Support Vector Machine Classification of Microarray Gene Expression Data[M].1999,Technical Report USCC-CRL-99-09. Available at: http://www.cse.ucsc.edu/research/compbio/genex.
  • 10[8]Alon U, Barkai N, Notterman D, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon cancer tissues probed by oligonucleotide arrays[J]. Proc Natl Acad Sci USA, 1999,96:6745-6750.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部