期刊文献+

BP-MPSO混合算法在机器人空间路径中的应用

Application of BP-MPSO Hybrid Algorithm in Space Path Optimization of Robot
下载PDF
导出
摘要 在对PUMA机器人空间路径进行BP算法环境建模与目标建模的基础上,针对传统粒子群优化(PSO)算法搜索空间有限、容易陷入局部最优点的缺陷,提出了一种改进的粒子群优化(MPSO)算法。该算法引入了基于全局信息反馈的重新初始化过程机制,并对PUMA机器人空间路径进行了优化。仿真实验表明,该算法的应用不仅降低了求解逆运动方程的难度,还能得到全局最优解,显著地提高了PUMA机器人空间路径优化的效率。 On the basis of target modeling and environment modeling with BP algorithm for PUMA robot space path, aiming at the problems of limited search space of traditional particle swarm optimization ( PSO ) algorithm and to easily bring into local optimal point, the modified PSO ( MPSO ) is proposed. The re-initial process mechanism based on global information feedback is introduced, and the space path of PUMA robot is optimized. The simulation indicates that the algorithm avoids the difficulty in solving the inverse motion equation, and ensures that the global optimal solution will be obtained. The efficiency of path optimization is increased greatly.
出处 《自动化仪表》 CAS 北大核心 2010年第2期12-15,20,共5页 Process Automation Instrumentation
关键词 PUMA机器人 空间路径优化 目标建模 BP算法 MPSO算法 PUMA robot Space path optimization Target modeling BP algorithm MPSO algorithm
  • 相关文献

参考文献9

二级参考文献65

  • 1张颖,吴成东,原宝龙.机器人路径规划方法综述[J].控制工程,2003,10(z1):152-155. 被引量:66
  • 2张汝波,郭必祥,熊江.基于遗传蚁群算法的机器人全局路径规划研究[J].哈尔滨工程大学学报,2004,25(6):724-727. 被引量:10
  • 3朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 4[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 5[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 6[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 7[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 8[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 9[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 10[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.

共引文献563

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部