期刊文献+

Research on extracting method of micro-scale remote sensing information combination and application in coastal zone

Research on extracting method of micro-scale remote sensing information combination and application in coastal zone
下载PDF
导出
摘要 Due to the need of rapid and sustainable development in China’s coastal zones, the high-resolution information theory using data mining technology becomes an urgent research focus. However, the traditional pixel-based image analysis methods cannot meet the needs of this development trend. The paper attempts to present an information extraction approach in terms of image segmentation based on an object-oriented algorithm for high-resolution remote sensing images. An aim of the author’ research is to establish an identification system of "pixel-primitive-object". Through extraction and combination of micro-scale coastal zone features, some objects are classified or recognized, e.g., tidal flat, water line, sea wall, and mariculture pond. Firstly, the authors extract various internal features of relatively homogeneous primitive objects using an image segmentation algorithm based on both spectral and shape information. Secondly, the features of those primitives are analyzed to ascertain an optimal object by adopting certain feature rules. The results from this research indicate that our model is practical to realize and the extraction accuracy of the coastal information is significantly improved as compared with the traditional approaches. Therefore, this study provides a potential way to serve the author’ highly dynamic coastal zones for monitoring, management, development and utilization. Due to the need of rapid and sustainable development in China’s coastal zones, the high-resolution information theory using data mining technology becomes an urgent research focus. However, the traditional pixel-based image analysis methods cannot meet the needs of this development trend. The paper attempts to present an information extraction approach in terms of image segmentation based on an object-oriented algorithm for high-resolution remote sensing images. An aim of the author’ research is to establish an identification system of "pixel-primitive-object". Through extraction and combination of micro-scale coastal zone features, some objects are classified or recognized, e.g., tidal flat, water line, sea wall, and mariculture pond. Firstly, the authors extract various internal features of relatively homogeneous primitive objects using an image segmentation algorithm based on both spectral and shape information. Secondly, the features of those primitives are analyzed to ascertain an optimal object by adopting certain feature rules. The results from this research indicate that our model is practical to realize and the extraction accuracy of the coastal information is significantly improved as compared with the traditional approaches. Therefore, this study provides a potential way to serve the author’ highly dynamic coastal zones for monitoring, management, development and utilization.
出处 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2009年第5期30-38,共9页 海洋学报(英文版)
基金 The "973" Project of China under contract No 2006CB701305 the "863" Project of China under contract No2009AA12Z148 the National Natural Science Foundation of China under contract No 40971224
关键词 OBJECT-ORIENTED Image Segmentation Coastal Zone Information Extraction Object-oriented, Image Segmentation, Coastal Zone, Information Extraction
  • 相关文献

参考文献6

二级参考文献49

共引文献232

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部