摘要
研究了Dirichlet问题-Δu(x)=f(x,u),x∈Ω,u∈H10(Ω),其中Ω是RN(N≥1)中的有界光滑区域.在一定条件下,得到了下列结论:(i)当λ1<l<+∞且l≠λj,j≥2时,该问题存在正解;(i)当l=λj,j≥1,且limt→∞[f(x,t)t-2F(x,t)]=+∞时,存在非退化解;(ii)当l<λ1时,没有正解.
This paper studies the following Dirichlet problem-Δu(x)=f(x,u), x∈Ω, u∈H 1 0(Ω),where Ω is a bounded smooth domain in R N (N≥1). Under some hypotheses, the following results are proved: (i) if λ 1<l<+∞ and l≠λ j,j≥2, then the problem has a positive solution; (ii) if l=λ j, j≥1 and if lim t→∞[f(x,t)t-2F(x,t)]=+∞,then the problem has a nontrivial solution; (iii) if l<λ 1, then the problem has no any positive solution.
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1998年第4期383-388,共6页
Journal of Central China Normal University:Natural Sciences
关键词
山路定理
正解
狄利克雷问题
Mountain Pass Theorem
positive solution
Dirichlet problem