期刊文献+

一类p-Laplacian方程解的存在性

Existence Theorem for a Class of p-Laplacian Equation
下载PDF
导出
摘要 文章主要利用扰动方法结合Calderon-Zydmound不等式和Schauder不动点定理研究了一类p-Laplacian方程:-Δpu+f(x,u,u)=h(x),u∈W1,0 p(Ω),对f做合适的假设,得到这类方程弱解的存在性。 The Calderon-Zydmound inequality and Schauder fixed point theorem due to the perturbation method are used to study a class p-Laplacian elliptic equation:-△pu+f(x,u,△↓u)=h(x),u∈W0^1,p(Ω). Under some sufficient conditions off, the equation existence of a weak solution is also proved in the paper.
出处 《四川理工学院学报(自然科学版)》 CAS 2010年第1期31-32,35,共3页 Journal of Sichuan University of Science & Engineering(Natural Science Edition)
关键词 扰动方法 Calderon—Zydmound不等式 弱极大值原理 perturbation method Calderon-Zydmound inequality weak maximum principle
  • 相关文献

参考文献8

  • 1Bartsch T,Liu Z L.On a supcrlincar elliptic p-Laplacian equation [J].J.Diff.Equations,2004,198(1):149-175.
  • 2Damascelli L, Sciunzi B. Regularity, monotonicity and symmetry of positive solutions of m-Laplacian equations [J].J.Diff.Equations,2004,206(2):483 -515.
  • 3Drabek P,Cirg P,Takac P.Bounded perturbations of homogeneous quasilinear operators using bifurcations from infinity [J].J.Diff.Equations ,2004,204(2):265 -291.
  • 4Papageorgiou E H,Papageorgiou N S.A multiplicity theorem for problems with the p-Laplacian [J].J.Funct.Anal. 2007,2.44(1):63-77.
  • 5Zhang Z T,Chen J Q,Li S J.Constructions of pseudogradient vector and sign-changing multiple solutions involving p-Laplacian [J]. J. Diff. Equations,2004,201 (2): 287-303.
  • 6Bensoussan A,Boccardo L, Murat E.On a nonlinear partial differential equation having natural growth tems and unbounded solution[J].Ann.Inst.H.Poincare Anal. Non Lineaire,1988,5 (4):347-364.
  • 7Gilbarg D, Trudinger N S.Elliptic Partial Differential Equations of Second Order[M]. Berlin: Springer-Verlag, 2001.
  • 8Deimling K. Nonlinear Functional Analysis[M]. New York: Springer-Verlag, 1985.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部