期刊文献+

模糊ART神经网络模型及其在图像识别中的应用 被引量:2

FUZZY ART NEURAL NETWORK MODEL AND ITS APPLICATION IN IMAGE RECOGNITION
下载PDF
导出
摘要 提出了采用低通过率波、去最小亮度和向量柱状图来提取人脸特征的方法,设计了模糊ART神经网络的结构、学习规则和识别算法,并采用模糊ART神经网络对向量柱状图生成的特征向量进行识别。仿真实验证明,通过调整神经网络的警戒参数值,不同的人具有不同的最大在线识别率,所有人平均的在线最大识别率可以达到89%。 The way of using low pass filter, minimum intensity subtraction and vector histogram to extract image feature of face were presented. The structure, learning rule and recognition algorithm of fuzzy ART neural network were described and designed. The fuzzy ART neural network was used to recognise the eigenvector generated by the vector histogram. Simulation experiment shows that there was different maximum online recognition rate'for different person when the neural network vigilance parameter values are selected properly. The maximum average online recognition rate could be up to 89%.
作者 顾明
出处 《计算机应用与软件》 CSCD 2010年第2期261-263,共3页 Computer Applications and Software
关键词 图像识别 神经网络 模糊ART 向量柱状图 识别算法 Image recognition Neural network Fuzzy ART Vector histogram Recognizing algorithm
  • 相关文献

参考文献8

  • 1Zhao W, Chellappa R, Rosenfeld A, et al. Face Recognition:A Literature Survey[ J ]. ACM Computing Surveys ,2003,35 (4) :399 - 458.
  • 2李武军,王崇骏,张炜,陈世福.人脸识别研究综述[J].模式识别与人工智能,2006,19(1):58-66. 被引量:107
  • 3Koji Kotani, Chen Qiu,Tadahiro Ohmi. Face Recognition Using Vector Quantization Histogram Method [ J ]. IEEE ICIP,2002 (9) : 105 - 108.
  • 4Phillips P J, Grother P, Micheals R J, et al. Face Recognition Vendor Test 2002 : Evaluation Report. 2003. http ://www. frvt. org/ FRVT2002/documents. htm.
  • 5Chen Lifen. A new LDA-based face recognition system which can solve the small sample size problem [ J ]. Pattern Recognition, 2000, 33 (10) :1713 - 1726.
  • 6AT&T Labaratory Cambridge. The ORL Database of Faces [ DB/OL ]. http ://www. uk. research. att. com/facedatabase. html.
  • 7樊建,吴耿锋.基于最先策略增强学习的ART2神经网络[J].模式识别与人工智能,2006,19(3):428-432. 被引量:3
  • 8Phil Picton. Neural Networks [ M ]. 2nd ed. Hampshire : Palgrave,2000 : 115 - 137.

二级参考文献71

  • 1Zhao W, Chellappa R, Rosenfeld A, Phillips P J. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003, 35(4):399-458
  • 2Phillips P J, Grother P, Micheals R J, Blackburn D M, Tabassi E, Bone J M. Face Recognition Vendor Test 2002: Evaluation Report. 2003. http://www.frvt. org/FRVT2002/documents. htm
  • 3Daugman J. Face and Gesture Recognition: Overview. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 675-676
  • 4Phillips P J, Wechsler H, Huang J, Rauss P. The FERET Database and Evaluation Procedure for Face-Recognition Algorithms. Image and Vision Computing Journal, 1998, 16(5): 295-306
  • 5Yang M H, Kriegman D J, Ahuja N. Detecting Faces in Images:A Survey. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(1): 34-58
  • 6Brunelli R, Poggio T. Face Recognition: Features Versus Templates. IEEE Trans on Pattern Analysis and Machine Intelligence, 1993, 15(10): 1042-1052
  • 7Bledsoe W. Man-Machine Facial Recognition. Technical Report, PRI:22, Panoramic Research Inc., Palo Alto, USA, 1966
  • 8Kanade T. Computer Recognition of Human Faces. Ph. D Dissertation. Kyoto University, Japan, 1974
  • 9Samal A, Iyengar P A. Automatic Recognition and Analysis of Human Faces and Facial Expressions: A Survey. Pattern Recognition, 1992, 25(1): 65-77
  • 10Nefian A V, Hayes M H. Hidden Markov Models for Face Recognition. In:Proc of the IEEE International Conference on Acoustics Speech and Signals Process. Seattle, USA, 1998, Ⅴ: 2721-2724

共引文献106

同被引文献28

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部