期刊文献+

基于SIFT特征匹配和动态更新背景模型的运动目标检测算法 被引量:18

DETECTION ALGORITHM OF MOVING OBJECTS BASED ON SIFT FEATURES MATCHING AND DYNAMIC UPDATING BACKGROUND MODEL
下载PDF
导出
摘要 运动摄像机情况下的运动目标检测是视频监控中的难点和热点问题。为了能够有效地检测出运动目标,提出了一个基于SIFT(Scale Invariant Feature Transform)特征匹配和动态背景建模的背景差算法。首先利用SIFT算法提取特征点,采用RANSAC(Random Sample Consensus)方法求得仿射变换模型参数并实现图像的全局运动补偿,然后用背景差方法实现运动目标的检测,同时进行阴影和鬼影的去除。SIFT特征点匹配的准确性和RANSAC方法去除异常点的有效性使得仿射变换模型参数计算准确,动态更新背景模型的背景差则完整地检测出了前景目标。与Ninad Thakoor实验结果对比说明:该算法能够准确地检测出运动目标,并且保持了前景目标的完整性。 It is a difficult and hot topic in video surveillance to detect moving objects with moving camera. In order to detect moving objects effectively,we propose a background subtraction method based on SIFT features matching and dynamic background modelling. Firstly, feature points are extracted by SIFT algorithm to compute the parameters of affine transform model guided by RANSAC, and to realise global motion compensation. Then we adopt background subtraction approach to detect moving objects, with shadow and ghost removing. The precision of SIFT feature points matching and the validity of picking out outliers by RANSAC algorithm make the parameters of affine transform model to be computed accurately, and by the background subtraction approach with dynamic updating background model ,foreground objects can be detected perfectly. Experimental results demonstrate that comparing with Ninad Thakoor method, our algorithm can detect moving objects accurately and keep the integrity of foreground objects.
作者 王亮芬
出处 《计算机应用与软件》 CSCD 2010年第2期267-270,共4页 Computer Applications and Software
关键词 运动摄像机 全局运动补偿 SIFT RANSAC 背景差 目标检测 Moving camera Global motion compensation Scale invariant feature transform (SIFT) Random sample consensus (RANSAC) Background subtraction Objects detection
  • 相关文献

参考文献15

  • 1Fabian Campbell-West,Paul Miller. Independent Moving Object Detection using a Colour Background Model [ C ]//Proceedings of the IEEE International Conference on Video and Signal Based Surveillance. Sydney : IEEE ,2006 :31 - 31.
  • 2曹银花,李林,郜广军,安连生.动摄像机和动目标跟踪模式下的目标检测新方法[J].光学技术,2005,31(2):276-278. 被引量:7
  • 3Ashraf Elinagar, Anup Basu. Robust Detection of Moving Objects by a Moving Observer on Planar Surfaces [ C ]//IEEE international Conference on Robotics and Antomation. Nagoya, Aichi, Japan: IEEE, 1995: 2347 - 2352.
  • 4Jin Sunglee, Kwang-Yeon Rhee, Seong-Dae Kim. Moving Target Tracking Algorithm Based on The Confidence Measure of Motion Vectors [ C ]//Proc. IEEE International Conference on Image Processing. Thessaloniki, Greece : IEEE ,2001:369 - 372.
  • 5Zhaozheng Yin, Robert Collins. Moving Object Localization in Thermal Imagery by Forward-backward MHI [ C ]//Proceedings of the 2006 Conference on Computer Vision and Pattern Recognition. New York:IEEE ,2006 : 133 - 133.
  • 6顾樑,徐大为,赵建伟,刘重庆.航拍图像序列的多运动目标定位[J].上海交通大学学报,2002,36(12):1745-1749. 被引量:4
  • 7赖作镁,王敬儒,张启衡.基于鲁棒背景运动补偿的运动目标检测算法[J].计算机应用研究,2007,24(3):66-68. 被引量:10
  • 8Ninad Thakoor, Jean Gao. Automatic Video Object Shape Extraction and Its Classification With Camera In Motion [ C ]//Proc. IEEE International Conference on Image Processing, Genova: IEEE, 2005:437 - 440.
  • 9Lucas B, Kanade T. An iterative image registration technique with application to stereo vision [ C ]//International Joint Conference on Artificial Intelligence. Vancouver: IEEE, 1981:674 - 679.
  • 10David G Lowe. Distinctive Image Features from Scale-Invariant Keypoints [J]. International Journal of Computer Vision ,2004,60(3) :91 - 110.

二级参考文献9

共引文献20

同被引文献129

引证文献18

二级引证文献80

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部