期刊文献+

基于加权mean-shift可见光/红外双通道目标跟踪 被引量:10

Visible/Infrared Dual-channel Target Tracking Based on Weighted Mean-shift
下载PDF
导出
摘要 为提高目标亮度突变时的跟踪性能,在每一帧进行目标跟踪时,首先提取可见光图像的颜色特征,红外图像的垂直投影图像和水平投影图像特征,然后利用可见光/红外各自通道的Bhattacharyya系数计算该通道的权值,并对加权mean-shift双通道跟踪方法进行了推导,提出了基于加权mean-shift可见光/红外双通道目标跟踪算法.该方法使前后两帧目标相似度大的通道取大的权值,从而达到有效利用各通道有利信息、提高跟踪性能的目的.实验表明,用本文提出的算法进行可见光/红外双通道目标跟踪时,与基于mean-shift单通道(可见光或红外)目标跟踪算法相比,可提高目标跟踪的准确度,特别是当目标进入树荫区域,引起目标亮度发生显著变化时,跟踪性能基本不受影响. According to the visible and infrared image sequences, when tracking in every frame, color features of visible image , vertical projective image and horizontal projective image features of infrared image are extracted. The weight in each channel was calculated with Bhattacharyya coefficient, and the weighted mean-shift tracking algorithm in dual-channel videos was derived. So visible/infrared dual-channel target tracking algorithm based on weighted mean-shift was proposed to improve tracking performance while luminance of object is changed. The proposed algorithm can effectively use the better information of each channel,for it makes the channel whose Bhattacharyya coefficient is higher have higher weight. The experiment in object tracking demonstrates that the proposed algorithm overall performance outperforms one channel(visible or infrared) target tracking algorithm based on mean-shift,and it almost remains the tracking performance when luminance of object is changed.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第2期357-363,共7页 Acta Photonica Sinica
基金 国家自然科学基金重点项目(60634030) 高等学校博士学科点专项科研基金(20060699032) 航空科学基金(2006ZC53037 2007ZC53037)资助
关键词 可见光/红外双通道 加权mean—shift 目标跟踪 Visible/infrared dual-channel Weighted mean-shift Target tracking
  • 相关文献

参考文献9

  • 1CONAIRE C O, COOKE E, O'CONNOR N, et al. Fusion of infrared and visible spectrum video for indoor surveillance[C].6th International Workshop on Image Analysis for Multimedia Interactive Services, 2005.
  • 2CONAIRE C O, COOKE E, O'CONNOR N, et al. Background modelling in infrared and visible spectrum video for people tracking[C]. IEEE, 2005,3 :20-25.
  • 3LEYKIN A, HAMMOUD R. Robust muhi-pedestrian tracking in thermal visible surveillance videos [ C]. Proceedings of Conference on Computer Vision and Pattern Recognition Workshop,2006,17(22) : 136- 143.
  • 4CONAIRE C O. Multi spectral object segmenlation and retrieval in surveillance video [C]. Proceedings of the 13th International Conference on Image Processing, 2006: 2381- 2384.
  • 5CHEN Cheng-yao,WOLF W. Background modeling and object tracking using multi-spectral sensors[C]. Proceedings of the 4th ACM International Workshop on Video Surveillance and Sensor Networks, 2006 : 27 34.
  • 6COMANICIU D, RAMESH V, MEER P, et al. Kernel-based object tracking [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003,25(5): 564-577.
  • 7FANG Y, YAMADA K, NINOMIYA Y, et al. Comparison between infrared-image-based and visible-image-based approaches for pedestrian detection[C]. IEEE,2003:505- 510.
  • 8王永忠,赵春晖,梁彦,潘泉,赵永强,程咏梅.一种基于纹理特征的红外成像目标跟踪方法[J].光子学报,2007,36(11):2163-2167. 被引量:12
  • 9魏坤,赵永强,潘泉,张洪才.一种改进相似度量的红外目标跟踪算法[J].光子学报,2008,37(5):987-991. 被引量:2

二级参考文献21

共引文献12

同被引文献69

引证文献10

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部