期刊文献+

一种基于危险理论的入侵检测算法

An Algorithm of Intrusion Detection Based on Danger Theory
下载PDF
导出
摘要 分析了危险理论的基本机制,针对当前基于传统免疫学的入侵检测技术存在的不足,提出了一种基于危险理论的入侵检测算法模型。在该算法模型中,系统只对“危险”进行响应,提高了系统的检测效率,同时将系统资源情况作为判断“危险”的一个因素,有效的降低了误报率和漏报率。 Ther paper analyzes the primitive mechanism of the danger theory,according to the shortcoming of intrusion detection technology based on the traditional immunology, this paper proposes a new Immune Algorithm Model for Intrusion Detection that based on danger model. In this model, the detection efficiency of the system is improved due to its only response to danger signal, since the system resources act as a factor of judging danger to reduce the false negative rate and false positive rate effectively.
作者 崔传斌 CUI Chuan-bin (College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China)
出处 《电脑知识与技术》 2010年第2期819-820,823,共3页 Computer Knowledge and Technology
关键词 危险理论 危险信号 入侵检测 danger theory danger signal intrusion detection
  • 相关文献

参考文献5

二级参考文献58

  • 1孙勇智,戴晓晖,韦巍.人工免疫响应的模型研究[J].浙江大学学报(工学版),2004,38(6):682-686. 被引量:5
  • 2李涛.基于免疫的网络安全风险检测[J].中国科学(E辑),2005,35(8):798-816. 被引量:40
  • 3李涛.Idid:一种基于免疫的动态入侵检测模型[J].科学通报,2005,50(17):1912-1919. 被引量:26
  • 4AICKELIN U, GREENSMITH J, TWYCROSS J. Immune System Approaches to Intrusion Detection - A Review, Proceedings International Conference on Artificial Immune Systems [ C]. Catania, Italy,2004.316 - 329.
  • 5KIM J, BENTLEY P. Towards an Artificial Immune System for Network Intrusion Detection: An Investigation of Dynamic Clonal Selection[ A]. The Congress on Evolutionary Computation[ C]. 2002. 1015- 1020.
  • 6KIM J, BENTLEY P. Immune Memory in the Dynamic Clonal Selection Algorithm[ A]. Proceedings of the First International Conference on Artificial Immune Systems(ICARIS) [ C]. Canterbury,2002.57 - 65.
  • 7GONZALEZ F, DASGUPTA D, GOMEZ J. The Effect of Binary matching Rules in Negative Selection[ A]. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) [C].2003. 196 - 206.
  • 8GONZALEZ F, DASGUPTA D, NINO L. A Randomized Real -Valued Negative Selection Algorithm[ A]. Proceedings of the 2nd International Conference on Artificial Immune Systems[ C]. Edinburgh, UK, 2003. 261 - 272.
  • 9GONZALEZ F, DASGUPTA D. Anomaly Detection Using Real-Valued Negative Selection[ J]. Genetic Programming and Evolvable Machines, 2003,4(4): 383 - 403.
  • 10HOFMEYR S, FORREST S. Architecture for an AIS[ J]. Evolutionary Computation, 2000, 7(1): 1289 - 1296.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部