期刊文献+

基于Kaiser滤波及噪声抑制优化的虹膜识别 被引量:1

Iris Recognition Based on Kaiser Filter and Noises Suppression Optimization
下载PDF
导出
摘要 针对Gabor滤波器在数据截断时存在频谱泄露而使滤波通道边缘模糊的现象,本文利用适应性强且性能灵活可调的Kaiser函数,构造具有频率和方向选择性、且边缘清晰的Kaiser滤波通道,提取虹膜频率特征。通过对提取的特征进行幅值分段分析,发现虹膜特征存在一个"有效特征阈值"L,幅值高于L的特征能够有效识别虹膜,而幅值低于L的特征为不相关噪声。采用噪声抑制优化,对噪声特征设置"相位无效码",可以优化海明距离,提高同类虹膜的正确匹配率。实验表明:与Gabor滤波方法相比,本文基于Kaiser滤波的优化方法将虹膜的正确识别率由98.6%提高到99.9%,而且在错误接受率(EAR)为0的情况下,具有更低的错误拒绝率(ERR)。 2D Kaiser filters with selective frequencies, selective orientations as well as changeable channels were constructed to extract iris features. The features were divided into several parts based on their amplitudes, and analysis of all the parts show that there is an 'effective amplitude threshold' (L) hiding in the iris features. The features with amplitudes bigger than L can achieve effective iris recognition, while those with amplitudes smaller than L are uneorrelated noises. By setting the noise features as "invalid codes", we optimized Hamming distance and improved the correct matching rate of same pairs of irises. Results show that compared with Gabor method, the optimization method improves the right recognition rate from 98.6% up to 99.9 % and has a null fault acceptance rate with lower fault rejection rate.
作者 岳学东 刘洋
出处 《光电工程》 CAS CSCD 北大核心 2010年第3期122-126,共5页 Opto-Electronic Engineering
基金 国家科技支撑计划项目(2006BAK01A38) 郑州轻工业学院校博士科研基金资助
关键词 虹膜识别 Kaiser 特征提取 噪声抑制 海明距离 iris recognition Kaiser feature extraction noises suppression Hamming distance
  • 相关文献

参考文献8

  • 1John Daugman. How iris recognition works [J]. IEEE Transactions on Circuits and Systems for Video Technology (S1051-8215), 2004, 14(1): 21-29.
  • 2Makram Nabti, Ahmed Bouridane. A effective and fast iris recognition system based on a combined multiscale feature extraction technique [J]. Patten Recognition(S0031-3203), 2008, 41: 868-879.
  • 3Yan Karklin, Michael S Lewicki. Emergence of complex cell properties by learning to generalize in nature scenes [J]. Nature(S0028-0836), 2009, 457: 83-86.
  • 4Sanchez-Avila C, Sancbez-Reillo R. Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation [J].Patten Recognition(S0031-3203), 2005, 38:231-240.
  • 5程佩青.数字信号处理[M].北京:清华大学出版社,2007.
  • 6Jones J P, Palmer L A. An evaluation of the two-dimensional Gabor filter model of simple receptive fieids in cat striate cortex [J]. Neurophysiology(S0022-3077), 1987, 58(6): 1233-1258.
  • 7LU Yao-xin, LIU Zhi-qiang, ZHU Xiang-hua. Image Feature extraction based on phase spectrum [C]//ICSP'04 Proceedings, Beijing, China, Jan 1, 2004: 906-909.
  • 8John Daugman. New Methods in Iris Recognition [J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics(S1083-4419), 2007, 37(5): 1167-1175.

共引文献6

同被引文献9

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部