摘要
研究一类具有单调功能反应和收获率的离散Leslie模型正周期解的存在性问题.利用重合度理论中的延拓定理,获得了该系统至少存在两个正周期解的充分条件.最后列举一些例子说明所得结果的正确性.
The existence of positive periodic solution is studied for a class of discreted Leslie system with monotonic functional response and harvesting.By using a continuation theorem based on coincidence degree theory,sufficient conditions are obtained for the existence of at least two positive periodic solutions.Finally,some examples are given to show the correctness of the obtained results.
出处
《天津师范大学学报(自然科学版)》
CAS
北大核心
2010年第1期11-15,共5页
Journal of Tianjin Normal University:Natural Science Edition
基金
国家自然科学基金资助项目(10671133)
关键词
单调功能反应
收获率
离散Leslie系统
多个正周期解
重合度
monotonic functional response
harvesting
discreted Leslie system
multiple positive periodic solutions
coincidence degree