期刊文献+

基于Gamma Test的非线性降雨径流回归模型研究 被引量:1

Analysis of Nonlinear Rainfall-runoff Regression Modeling Based on Gamma Test
下载PDF
导出
摘要 Gamma Test是一个与模型无关的数据分析方法,可以解决建立回归模型时面对的模型精度评价、划分率定和验证的数据及模型输入因子选择这三个问题。本文以英国的River Tone流域为例,应用Gamma Test方法分析数据,指导建立双层BP神经网络降雨-径流模型。结果表明,Gamma Test可以指导优化输入因子,精简模型结构,防止过拟合。 Nonlinear regression model is widely used in rainfall-runoff modeling. However, estimating the model accuracy, partition data for calibration and validation, and feature selection are three main handicaps when constructing the model. Gamma test is a model-independent data analysis method. It can be used to help constructing model and solve over-fitting problem during model training period. This paper firstly introduced the Gamma Test, and gave the general formula of rain-runoff regression model. Then a case study was taken in the River Tone catchment in the Southeast UK. The error variance estimation by Gamma test provided a target mean squared error for training the two layer back propagation artificial neural network, which was used as the nonlinear rainfall-runoff regression model in this study. Optima input feature combination was selected by the minimum error variance indicated by the Gamma test. The results show that the model with optima feature combination and target mean squared error with error variance perform best during validation period, while model with greater accuracy than the error variance will result in a model overtraining problem.
出处 《水文》 CSCD 北大核心 2010年第1期39-43,共5页 Journal of China Hydrology
基金 国家自然科学基金(50479033) 广东省科技计划基金(2006B37202001)
关键词 GAMMA TEST ANN 过拟合 径流模拟 回归模型 Gamma Test ANN over-fitting rainfall-runoff modeling regression model
  • 相关文献

参考文献20

  • 1Agalbjorn S, Koncar N, Jones AJ. A note on the gamma test[J]. Neural Comput Appl, 1997,5(3):131 - 133.
  • 2A Moghaddamnia,M. Ghafari Gousheh, J. Piri, S. Amin, D. Hall. Evaporation estimation using artificial neural networks and adaptive neuro-fuzzy inference system techniques [J]. Advances in Water Resources,2009(32) :88 - 97.
  • 3Bray, M. Han, D. Identification of support vector machines for runoff modeling [J]. Journal of Hydroinformatics, 2004,6 (4):265- 280.
  • 4Cybenko G. Approximation by superpositions of sigmoidal function [J]. Mathematics of Control, Signals and Systems,1989(2):303-314.
  • 5Dawei Han,Terence Kwong, Simon Li. Uncertainties in real-time flood forecasting with neural networks [J].Hydrological processes, 2007,21:223 228.
  • 6Dawson C W, Wilby R. An artificial neural network approach to rainfall-runoff modelling[J].Hydrol. Sci. J., 1998, 43:14-66.
  • 7Evans D, Jones All. A proof of the gamma test[J]. Proc.Roy.Soc.Ser. A, 2002,458 ( 2027 ) :2759 - 99.
  • 8Jarvis P.S., Wilson I.D., Ware J.A, A genetic algorithm approach to attribute selection utilising the Gamma Test [A]. In: Proceedings of A12003 The Twenty-third International Conference on Knowledge Based Systems and Applied Artificial Intelligence [C]. Cambridge, UK, December 10- 12, 2003.
  • 9Konvcar N. Optimisation methodologies for direct inverse neurocontrol[D]. PhD thesis. Department of Computing, Imperial College of Science, Technology and Medicine, University of London. 1997.
  • 10Minns A W. Artificial neural networks as rainfall-runoff models [J]. J. Hydrol. Sci., 1996, 41:339-417.

二级参考文献26

  • 1焦李成.神经网络计算[M].西安:西安电子科技大学出版社,1996.37-39.
  • 2Minns A W.Artificial neural networks as rainfall-runoff models[J].J.Hydrol.Sci J.1996,41:339-417.
  • 3Dawson C W,Wilby R.An artificial neural network approach to rainfall-runoff modelling[J].Hydrol.Sci.J.1998,43:14-66.
  • 4Capolo M,Andreussi P,Soldati A.River filled forecasting with a neural network model[J].Water Resour.Res.1999,35:1191-1197.
  • 5Karunanithi N,Grenney W J,Whitley D,Bovee K.Neural networks for river flow prediction[J].J.Computing Civil Engng.,1994(8):201-219.
  • 6Hsu K,Gurucan S.River flow prediction using the cascade-correlation neural network learning architecture[C].In:Proceedings of the Water 99 Joint Congress,Brisbane,Australia,1999:94-99.
  • 7Smith J,Eli R N.Neural network models of rainfall-runoff processes[J].J.Water Resour.Plan.Mgmt.1995(121):499-508.
  • 8Bin Zhang,Rao S Govindaraju.Prediction of watershed runoff using Bayesian concepts and modular neural networks[J],Water Resour.Res.2000(6):753-762.
  • 9罗晓曙.人工神经网络理论[M].桂林:广西师范大学出版社,2005.
  • 10Giustolisi O, Simeone V. Optimal design of artificial neural networks by a multi-objective strategy.. groundwater level predictions[J]. Hydrological Sciences Journal,2006,51(3):502-523.

共引文献41

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部