期刊文献+

饱和粉质黏土反复冻融电阻率及变形特性试验研究 被引量:22

Experimental study of electrical resistivity and deformation characteristics of saturated silty clay during repeated freeze-thaw cycles
下载PDF
导出
摘要 针对青藏铁路北麓河粉质粘土,利用冻融循环全过程电阻率试验设备获取封闭系统下冻融过程电阻率、土体温度场、冻胀融沉变形量全过程曲线,探讨了饱和粉质黏土正冻正融过程电阻率及变形特性。试验结果表明:冻融循环过程中电阻率与冻融变形的变化是实时的、完全同步的,利用电阻率特性研究冻融过程土体结构变化是可行的;每次冻融冻土电阻率随着冻融次数增加呈指数关系减小,融土电阻率随冻融次数增加呈指数关系增加;每次冻胀量与融沉量随冻融次数的增加而减小,平均干密度随冻融次数增加而增加,并且经过5次冻融循环后冻胀融沉量和干密度均趋于稳定。 Using the freeze-thaw cycle apparatus combined with electrical resistivity observation for whole process , repeated freeze-thaw tests in a closed system(i.e, no water supplied) are performed for the saturated silty clay in Beilu River with dry density of 1.62 g/cm^2, in which the complete testing data for the deformation versus time curve, temperatures in different layers and the associated electrical resistivity-time curve are obtained. The experimental results indicate that the changes of resistivity, temperature and deformation during freeze-thaw cycles are real-time and synchronical, which also proves that it is feasible to study the change of soil structure during freezing and thawing by using electrical resistivity method. The resistivity of frozen soil decreases and that of thawed soil increases exponentially with increasing of freezing-thawing times. The amount of frost heave, thaw collapse and average dry density in every cycle rise with increasing of freezing-thawing times, and they trend to be stable after 5 freeze-thaw cycles.
作者 付伟 汪稔
出处 《岩土力学》 EI CAS CSCD 北大核心 2010年第3期769-774,共6页 Rock and Soil Mechanics
基金 中国科学院冻土工程国家重点实验室开放课题(NoSKLFSE200605)资助
关键词 反复冻融 电阻率 冻胀 融沉 温度 正冻土 正融土 repeated freeze-thaw cycles electrical resistivity frost heave thaw collapse temperature freezing soil thawing soil
  • 相关文献

参考文献16

  • 1屠毓敏,刘国华,王振宇,李富强.龙凤山水库土石坝电阻率层析成像无损检测技术[J].岩土力学,2008,29(6):1597-1601. 被引量:11
  • 2SHIMA H. Two-dimensional automatic resistivity inversion technique using alpha centers[J]. Geophysics, 1990, 55(6): 682-694.
  • 3MAURITSCH H J, SETBERL W, ARNDT R. et al Geophysical investigations of large landslides in the Camic Region of southern Austria[J]. Engineering Geology, 2000, 56:373-388.
  • 4郭秀军,贾永刚,黄潇雨,牛建军.利用高密度电阻率法确定滑坡面研究[J].岩石力学与工程学报,2004,23(10):1662-1669. 被引量:75
  • 5GAJDOS V, KRAL V. Influence of hydrocarbon pollution to soil conductivity[C]//Proceedings of Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP'95). Orlando: [s. n.], 1995: 785-789.
  • 6KELLER G geophysical Explorations Construction V. Engineering applications of electrical methods[C]//Conference on Subsurface for Underground Excavation and Heavy New Hampshire: [s. n.], 1974:11 - 16.
  • 7TELFORD W M, GELDART L P, SHERIFF R E, et al Applied Geophysics[M]. New York: Cambridge University Press, 1976.
  • 8DELANEY A J, PAIGE R P, STEVEN A A. Electrical resistivity of frozen and petroleum contaminated fine grained soil[J]. Cold Regions Science and Technology, 2001, 32, 107-119.
  • 9ARCHIE G E. The electric resistivity log as aid in determining some reservoir characteristics[J] Transactions of the American Institute of Mining, Metallurgical and Petroleum Engineers, 1942, 14(6): 54-61.
  • 10WAXMAN M H, SMITH L J M. Electrical conductivity in oil-bearing shaly sand[J]. Society of Petroleum Engineers Journal, 1968, 65(5): 1577- 1584.

二级参考文献52

共引文献159

同被引文献357

引证文献22

二级引证文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部