期刊文献+

一种新的结合非下采样Contourlet与自适应全变差的图像去噪方法 被引量:5

A New Image Denoising Method Combining the Nonsubsampled Contourlet Transform and Adaptive Total Variation
下载PDF
导出
摘要 该文提出了一种新的结合非下采样Contourlet变换(NSCT)和自适应全变差模型的图像去噪方法。首先通过NSCT对含噪图像进行分解,根据高斯比例混合(GSM)模型建立图像模型;然后利用贝叶斯估计进行图像去噪,重构后得到初次去噪图像;最后,结合自适应全变差模型对初次去噪图像进行重构滤波,得到最终的去噪图像。实验结果表明,该方法可以有效地消除图像中的Gibbs伪影及噪声,在去噪图像峰值信噪比(PSNR)和边缘保持性能上都优于已有的算法。 This paper presents a new image denoising scheme by combining the NonSubsampled Contourlet Transform (NSCT) and adaptive total variation model. The original image is first decomposed using NSCT and the image model is built based on Gaussian Scale Mixtures (GSM) model. Then the image noises are removed using Bayesian estimation, producing the preliminary denoised image after reconstruction. Then the preliminary primary denoised image is further filtered using the adaptive total variation model, producing the final denoised image. Experiments show that the proposed scheme can remove Gibbs-like artifacts and image noise effectively. Besides, it outperforms the existing schemes in regard of both the Peak-Signal-to-Noise-Ratio (PSNR) and the edge preservation ability.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期360-365,共6页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60802077)资助课题
关键词 图像处理 非下采样CONTOURLET变换 自适应全变差 高斯比例混合模型 Image processing NonSubsampled Contourlet Transform(NSCT) Adaptive total variation GaussianScale Mixtures(GSM) model
  • 相关文献

参考文献11

  • 1刘英霞,王欣.双Haar小波变换系数的MAP估计及在图像去噪中的应用[J].电子与信息学报,2007,29(5):1038-1040. 被引量:2
  • 2戴芳,薛建儒,郑南宁.嵌入固有模态函数的各向异性扩散方程用于图像降噪[J].电子与信息学报,2008,30(3):509-513. 被引量:8
  • 3Cunha A L, Zhou J, and Do M N. The NonSubsampled Contourlet Transform: Theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101.
  • 4Do M N and Vetterli M. The contourlet transform: An efficient directional multiresolution image representation [J]. IEEE Transactions on Image Processing, 2005, 14(12): 2091-2106.
  • 5张瑾,方勇.基于分块Contourlet变换的图像独立分量分析方法[J].电子与信息学报,2007,29(8):1813-1816. 被引量:8
  • 6Ma J and Plonka G. Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEE Transactions on Image Processing, 2007, 16(9): 2198-2206.
  • 7Candes E J and Guo F. New multiscale transforms, minimum total variation synthesis: Applications to edge-preserving image reconstruction. Signal Processing, 2002, 82(11): 1519-1543.
  • 8Portilla J, Strela V, Wainwright M J, and Simoncelli E P. Image denoising using scale mixtures of Gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11): 1338-1351.
  • 9Gilboa G, Sochen N, and Zeevi Y. Variational denoising of partly textured images by spatially varying constraints. IEEE Transactions on Image Processing, 2006, 15(8): 2281-2289.
  • 10Piv zurica A and Philips W. Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising[J]. IEEE Transactions on Image Processing, 2006,15(3): 654-665.

二级参考文献27

  • 1Mallat S and Zhong S.Characterization of signals for multiscal edges.IEEE Trans.on PAMI,1992,14(7):710-732.
  • 2Donoho D.De-noising by soft thresholding.IEEE Trans.on IT,1995,41(3):613-627.
  • 3Donoho D and Johnstone I M.Adapting to unknowing smoothness via wavelet shrinkage J.Amer.Statist.Associ.,1995,90(2):1200-1224.
  • 4Moulin P and Liu J.Analysis of multiresolution image denoising schemes using generalized Gaussian and complexity priors.IEEE Trans.on Information Theory,1999,45(4):909-919.
  • 5Hansen M and Yu B.Wavelet thresholding via MDL for natural images.IEEE Trans.on Information Theory,2000,46(8):1778-1788.
  • 6Xie J,Zhang D,and Xu W.Spatially adaptive wavelet denoising using the minimum description length principle.IEEE Trans.on Image Processing,2004,13(2):179-187.
  • 7Nowak R D.Wavelet-based Rician noise removal for Magnetic resonance imaging.IEEE Trans.on Image Processing,1999,8(10):1408-1419.
  • 8Nguyen T Q and Vaidyananthan P P.Structures for M-channel perfect-reconstruction FIR QMF banks which yield linear-phase analysis filters.IEEE Trans.on Acoust.,Speech,Signal Processing,1990,ASSP-38(3):433-446.
  • 9Wang X.Nonlinear multiwavelet transform based soft shresholding In Conf.IEEE APCCAS'2000,Tianjing,Dec.2000:775-778.
  • 10Sendur L and Selesnik I W.Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency.IEEE Trans.on Signal Processing,2002,11(11):2744-2756.

共引文献14

同被引文献60

  • 1焦李成,孙强.多尺度变换域图像的感知与识别:进展和展望[J].计算机学报,2006,29(2):177-193. 被引量:45
  • 2刘杰,朱启兵,李允公,应怀樵.基于新阈值函数的二进小波变换信号去噪研究[J].东北大学学报(自然科学版),2006,27(5):536-539. 被引量:11
  • 3刘峰.基于小波变换的图像扩散滤波方法[J].中国科学(E辑),2006,36(6):668-677. 被引量:4
  • 4侯建华,田金文,柳健.小波域局部维纳滤波器估计误差分析及图像去噪[J].光子学报,2007,36(1):188-191. 被引量:15
  • 5Perona P and Malik J.Scale space and edge detection using anisotropic diffusion[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(7):629-639.
  • 6Rudin L,Osher S,and Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D,1992,60(1-4):259-268.
  • 7Lysaker M,Lundervold A,and Tai X C.Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,12(12):1579-1590.
  • 8Lysaker M,Osher S,and Tai X C.Noise removal using smoothed normals and surface fitting[J].IEEE Transactions on Image Processing,2004,13(10):1345-1357.
  • 9Hahn J,Tai X C,Borok S,et al..Orientation-matching minimization for image denoising and inpainting[J].International Journal of Computer Vision,2011,92(3):308-324.
  • 10Yang Yu-fei,Pang Zhi-feng,Shi Bao-li,et al..Split Bregman method for the modified LOT model in image denoising[J].Applied Mathematics and Computation,2011,217(12):5392-5403.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部