期刊文献+

压缩感知及应用 被引量:16

Theory and Applicaton of Compressive Sensing
下载PDF
导出
摘要 传统的信号采样必须遵循香农采样定理,产生的大量数据造成了存储空间的浪费。压缩感知(CS)提出一种新的采样理论,它能够以远低于奈奎斯特采样速率采样信号。压缩感知的基本论点是如果信号具有稀疏性,可投影到一个与变换基不相关的随机矩阵并获得远少于信号长度的测量值,再通过求解优化问题,精确重构信号。本文详述了压缩感知的基本理论,压缩感知适用的基本条件:稀疏性和非相干性,测量矩阵设计要求,及重构算法的RIP准则,并介绍了压缩感知的应用及仿真。仿真结果表明当采样个数大于K×log(N/K),就能将N维信号稳定地重建出来。 Conventional approaches to sampling signals follow Shannon principle. It take great costs on data storage. In this paper, the theory of Compressive sensing is introduced. Compressive sensing provides a new sampling theory to sample signal below the Nyquist rate. If signal or image is sparse in some orthonormal basis , signal or image can be recovered from small number of measurement using an optimization process. The structure of the signal is preserved in the measurement and the measure matrix is incoherent with the or- thonormal basis. CS relies on two principles : sparsity and incoherence. RI Pprinciple is the precondiction of designing reconstruction algorithm. The application of CS theory are introduced and the simulation is illustrated in details. The simulation show that the signal can be reconstructed stablely when the number of samples is larger than K × log(N/K).
出处 《微计算机应用》 2010年第3期12-16,共5页 Microcomputer Applications
基金 国家自然科学基金(项目批准号:40971206)
关键词 压缩感知 观测矩阵 稀疏性 RIP compressive sensing, measurement matrix sparsity, RIP
  • 相关文献

参考文献10

  • 1DONOHO D. Compressed sensing[ J]. IEEE Trans. Information Theory,2006,52(4) :1289 -1306.
  • 2E J Candes and T Tao. Near optimal signal recovery from random projections : Universal encoding strategies [ J ]. IEEE Trans. Info. Theory. 2006,52 (12) :5406 - 5425.
  • 3Tro PPJ, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit. Transactions on In formation Theory,2007, 53 (12) :4655 - 4666.
  • 4Cands E, Romberg J, Tao T. Robust uncertainty principles : Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory. 2006, 52 (2) :489 - 509.
  • 5R Baraniuk. Alecture on compressive sensing[ J]. IEEE Signal Processing Magazine. July 2007,24 (4) :118 -121.
  • 6E J Candes and M B Wakin.. An Introduction to Compressive Sampling[ J]. IEEE Signal Processing Magazine. March 2008,25 (2) :21 -30.
  • 7ZOU J, GILBERT A C, STRAUSS M J, et.al. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis [ J ]. Journal of Comp - utational Physics,2006,211 (2) : 572 - 595.
  • 8FIGUEIREDO M A T, NOWAK R D, WRIGHT S J. Gradient projection for sparse reconst - ruction : application to compressed sensing and other inverse problems [ J ]. IEEE J- STSP, 2007,1 (4) :586 -598.
  • 9E Candes. Compressive sampling [ A ]. Proceedings of the International Congress of Mathematicians [ C ]. Madrid, Spain, 2006,3 : 1433 - 1452.
  • 10D. Takhar, V. Bansal, M. Wakin, M. Duarte, D. Baron, J. Laska, K. F. Kelly, and R. G. Baraniuk. Compressed sensing camera: New theory and an implementation using digital micromirrors, in Proc. Comput Imaging IV SPIE Electronic Imaging. San Jose, Jan. 2006.

同被引文献137

  • 1黄琼,屈乐乐,吴秉横,方广有.压缩感知在超宽带雷达成像中的应用[J].电波科学学报,2010,25(1):77-82. 被引量:25
  • 2A.J.Berkhout,梁世华.论反射成像与透射层析成像之间的关系[J].石油物探译丛,1994(3):77-81. 被引量:1
  • 3王艳,郭永彩,高潮.基于空间域共轭梯度法的盲目图像复原[J].光学技术,2007,33(1):153-155. 被引量:7
  • 4张洁颖,孙懋珩,王侠.基于RSSI和LQI的动态距离估计算法[J].电子测量技术,2007,30(2):142-145. 被引量:59
  • 5Venkatesan R,Koon S M,Jakubowski M H,et al.Robust image hashing[C] //CA.Proc IEEE Int Conf Image Processing.Vancouver:CA,2000:664-666.
  • 6Kozat S S,Venkatesan R,Mihcak M K.Robust perceptual image hashing via matrix invariants[C] //IEEE.Proc IEEE Int Conf Image Processing.Singapore:IEEE,2004.
  • 7Swaminathan A,Mao Yinian,Wu Min.Robust and secure image hashing[J].IEEE Trans Inf Forensics Security,2006,1(2):215-230.
  • 8Johnson M,Ramchandran K.Dither-based secure image hashing using distributed coding[C] //IEEE.Proc IEEE Int Conf Image Processing.Singapore:IEEE,2003:751-754.
  • 9Lin Y C,Varodayan D,Girod B.Image authentication based on distributed source coding[C] //IEEE.Proc IEEE Int Conf Image Processing.S Antonio:IEEE,2007:5-8.
  • 10Lin Y C,Varodayan D.Localization of tampering in contrast and brightness adjusted images using distributed source coding and expectation maximization[C] //IEEE.Proc IEEE Int Conf Image Processing,Lisbon:IEEE,2008:2 204-2 207.

引证文献16

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部