期刊文献+

多核信息融合模型及其应用 被引量:5

Multiple kernel fusion model in kernel sampling space and its usage
下载PDF
导出
摘要 针对单核学习方法不能充分获取对象非线性特征的问题,提出一种核采样空间中的多核融合模型。与工作于隐式核空间的常见多核融合模型不同,该融合模型本质上是一种矩阵融合模型,其融合参数不受融合核矩阵半正定性要求的约束。在该模型基础上,进一步提出一种多核正则化Ho-Kashyap分类器,并设计了相应的迭代优化算法。最后,将该多核融合算法应用到水下钴结壳超声识别领域。实验结果表明,与单核学习方法相比,采用核采样空间多核信息融合模型的钴结壳超声识别分类正确率提高了7%,说明了该融合模型的有效性。 Single kernel learning method cannot obtain full nonlinear features of the objects to be recognized.A kind of multiple kernel fusion model in kernel sampling space is proposed.Unlike common multiple kernel fusion model in implicitly kernel space,the new fusion model is a kind of matrix fusion method in essence and the fusion parameters are not restricted by semi-definiteness of fusion kernel matrix.Based on the new fusion model,a kind of multiple kernel regularized Ho-Kashyap classifier is proposed and the related optimization algorithm is designed.At last,the fusion model is used in underwater cobalt crust echo recognition and experiment results show that the proposed multiple kernel fusion learning method is effective,which improves the performance of cobalt crust echo recognition by 7% in contrast with single kernel learning method.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第2期248-252,共5页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(50474052 50875265)资助项目
关键词 多核学习 多核信息融合 Ho-Kashyap分类器 水下钴结壳识别 multiple kernel learning multiple kernel fusion Ho-Kashyap classifier underwater cobalt crust echo recognition
  • 相关文献

参考文献15

  • 1LIU C J, WECHSLER H. A shape- and texture-based enhanced Fisher classifier for face recognition[J]. IEEE Trans Image processing, 2001,10(4):598-608.
  • 2何国辉,甘俊英,李春芝,高建虎.人脸与虹膜特征层融合模型的研究[J].电子学报,2007,35(7):1365-1371. 被引量:15
  • 3高学金,王普,孙崇正,易建强,张亚庭,张会清.基于动态ε-SVM的发酵过程建模[J].仪器仪表学报,2006,27(11):1497-1500. 被引量:6
  • 4刘爱伦,袁小艳,俞金寿.基于KPCA-SVC的复杂过程故障诊断[J].仪器仪表学报,2007,28(5):870-874. 被引量:16
  • 5许丽佳,龙兵,王厚军.基于LSSVM-HMM的发射机故障预测研究[J].仪器仪表学报,2008,29(1):21-26. 被引量:19
  • 6BENNETT K P, MOMMA M. MARK. A boosting algorithm for heterogeneous kernel models[C]. SIGKDD, 2002:24-31.
  • 7CRISTIANINI N, ELISSEEFF A, SHAWE-TAYLOR J. Optimizing kernel alignment over combinations of kernels[R]. Technical Report NC-TR-02-121, Neuro COLT, 2002.
  • 8SONNENBURG S, R A TSCH G. A general and efficient multiple kernel learning algorithm[R]. Neural Information Processing Systems, 2005.
  • 9SONNENBURG S, R A TSCH G, SCH A FER C. Large scale multiple kernel learning[J]. Journal of Machine Learning Research, 2006.
  • 10KIM S J, MAGNANI A, BOYD S. Optimal kernel selection in kernel fisher discriminant[C]. ICML 2006-Proceedings of the 23rd International Conference on Machine Learning, 2006:465-472.

二级参考文献46

共引文献81

同被引文献33

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部