期刊文献+

福州细菌性痢疾流行与气象关系的BP人工神经网络模型研究 被引量:4

Study on BP neural network model of bacillary dysentery influenced by meteorological elements in Fuzhou
原文传递
导出
摘要 目的探索BP人工神经网络在细菌性痢疾预测模型的应用,为细菌性痢疾的预防控制措施提供科学依据。方法用Matlab7.2软件包中的神经网络工具箱,建立福州地区菌痢流行的BP人工神经网络模型,并以2007年的资料验证其预测成功率。结果神经网络经学习和训练,训练误差下降并趋于稳定,回代相关系数为0.826,模型的预测成功率为83.33%。结论本研究表明,BP人工神经网络在气象要素与菌痢发病之间建模是可行的,可以作为预测菌痢流行的一种新方法。 Objective To explore the performance of a BP neural network model of bacillary dysentery prevalence influenced by meteorological elements,and to provide scientific evidences for preventive strategies of bacillary dysentery.Methods The forecasting model of bacillary dysentery prevalence was established by using the neural network toolbox of Matlb 7.2 software package with surveillance data of bacillary dysentery and meteorological records from the year of 1987 to 2006 in Fuzhou.The model was tested with data of 2007.Results The training of the model decreased errors of predictions and made the system more stable.The coefficient value of final model was 0.826 and the accurate rate of prediction was 83.33%.Conclusion The established BP neural network model may be used as a new method for predicting the prevalence of bacillary dysentery with meteorological elements.
出处 《中国预防医学杂志》 CAS 2010年第2期178-180,共3页 Chinese Preventive Medicine
关键词 细菌性痢疾 气象要素 BP人工神经网络 Bacillary dysentery Meteorological elements BP neural network
  • 相关文献

参考文献14

  • 1WHO. Using climate to predict infectious disease epidemics [OL]. 2005. Http: //www. who. int/g/obalchange/publieations/infectdiseases/en/.
  • 2WHO. Using climate to predict infectious disease outbreaks: a review [OL ]. 200d. Http: //www. who.int/globalchange/ publications/infectdiseases/en/.
  • 3陈朴,邱东光,邱斌书,韩惠丽,于宏敏,王保民.细菌性痢疾季节性高峰与气温关系的研究[J].中国公共卫生,2000,16(6):534-534. 被引量:19
  • 4贾蕾,黎新宇,刘桂荣,刘园,严寒秋,窦相峰,吴疆,王全意.北京气象因素与细菌性痢疾发病关系的研究[J].现代预防医学,2007,34(13):2470-2471. 被引量:39
  • 5张红升,吴拥军,吴逸明.人工神经网络技术在肺癌6种肿瘤标志物联合检测中的应用[J].卫生研究,2007,36(3):367-368. 被引量:8
  • 6Fan X, Liu T, Li X, et al, Neural network analysis of ex-vivo expansion of hematopoietie stem cells[J]. Ann Biomed Eng, 2007, 35 (8): 1404-1413.
  • 7Hay DC, Wakayama A, Sakamura K, etal. Improved estimation of energy expenditure by artificial neural network modeling [J].Appl Physiol Nutr Metab, 2008, 33 (6): 1213- 1222.
  • 8Lai KC, Chiang HC, Chen WC, et al. Artificial neural network-based study can predict gastric cancer staging [J]. Hepatogastroenterology, 2008, 55 (86-87): 1859-1863.
  • 9Zhang Y, Bi P, Janet E, et al. Climate variations and bacillary dysentery in northern and southern cities of China [J]. J Infect 2007, 55 (4): 194-200.
  • 10关鹏,曲波,何苗,黄德生,周宝森.关联规则及其在细菌性痢疾风险预测中的应用[J].现代预防医学,2007,34(11):2007-2008. 被引量:12

二级参考文献22

共引文献95

同被引文献95

引证文献4

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部