期刊文献+

对 DJ 小波 VisuShrink 去噪法中 j_0 取值的分析 被引量:7

Analysis of the Parameter j 0 in DJ's VisuShrink Denoising
下载PDF
导出
摘要 DJ小波VisuShrink去噪法在数字信号处理方面的应用已十分广泛,但是去噪后恢复信号质量的优劣与低分辨率截断参数j0的选取是密切相关的,而j0的选取又与被污染信号的噪声指数σ以及采样率有关。这篇文章对这些关系进行了分析,并给出了仿真计算的结果,分析与计算的结论对如何选取最佳低分辨率截断参数j0具有一定的指导意义。 The method of DJ's VisuShrink denoising has been applied widely in degital signal processing.But the quality of the signal restored from noise is related to the parameter j 0,the low resolution cutoff,and that the selecting of j 0 is related to the noise power σ of a signal corrupted by an additive noise and the sampling rate of the signal.This article analyzes these relationships among these parameters and gives many simulation results.These results have significant meanings in selecting the parameter j 0.
出处 《国防科技大学学报》 EI CAS CSCD 1998年第6期102-108,共7页 Journal of National University of Defense Technology
关键词 小波 波形恢复 VisuShrink法 去噪 数字信号处理 wavelet denoising,waveform restoration,VisuShrink
  • 相关文献

参考文献2

  • 1Ching P C,Approximated sampling Theorem and Wavelet Denoising for Arbitrary Waveform Restoration,1995年
  • 2Ching P C,Quadrature Mirror Filter Decomposition And Multiresolution Approximation,1994年

同被引文献19

  • 1陈木生.一种新的基于小波变换的图像去噪方法[J].光学技术,2006,32(5):796-798. 被引量:10
  • 2龚昌来.基于小波变换和均值滤波的图像去噪方法[J].光电工程,2007,34(1):72-75. 被引量:28
  • 3中山大学数学力学系.概率论及数理统计[M].北京:人民教育出版社,1985..
  • 4[1]B维德罗等著.自适应信号处理[M].王永德译.成都:四川人民出版社,1991.
  • 5[2]Christiane Antweiler, Jorn Grunwald and Holger Quack. Approximatio n of optimal step size control for acoustic echo cancellation. ICASSP 1997,Apr(1):295-298.
  • 6[5]Abreu E., lightstone M., Mitra S. K. and Arakawa K. A new effi cient approach for the removal of impulse noise from highly corrupted images[J ]. IEEE Tran. on Image Proc., June 1996, 5(6):1012-1025.
  • 7[6]Zhang D. and Wang D. Impulse noise detection and removal using fu zzy techniques[J]. IEE Electronics Letters, Feb.1997, 33(5): 378-379.
  • 8[8]Coifman R R. Adapted multiresolution analysis, computation, signal processing and operator theory[M]. Proceeding of the International Congress o f Mathematicians, Kyoto, Math Soc Japan, 1990. 887-897
  • 9[12]Donoho and Johnstone. Ideal spatial adaptation by wavelet shrinka ge[J]. Biometrika, 1994, 81(3): 425-455.
  • 10[13]Daubechies I. Orthonormal bases of compactly supported wavelets [J]. Commun. Pure Appl. 1998, 41: 909-996.

引证文献7

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部