期刊文献+

基于Fisher判决率加权的修正最近邻模糊分类器设计 被引量:2

Design of modified nearest neighbor fuzzy classifier based on Fisher discriminant weighting
下载PDF
导出
摘要 针对基于高分辨距离像(HRRP)多类特征联合舰船目标识别的问题,提出了一种基于Fisher判决率加权的修正最近邻模糊分类器。在对舰船目标的HRRP特性进行分析的基础上提取船长、离散性、对称性、中心距等稳定特征,结合各类特征的稳定性和可分性,设计一种能让不同特征充分发挥优势作用的修正最近邻模糊分类器。该分类器用Fisher判决率对特征差隶属度进行加权修正;通过10类军民船目标的实测数据验证,表明基于Fisher判决率加权的修正最近邻模糊分类器在舰船目标识别领域具有很好的实际应用前景。 Modified nearest neighbor fuzzy classification algorithm based on Fisher discriminantweighting is proposed for ship target recognition using multi-features of high resolution range profile(HRRP). Firstly, ship length, dispersant, symmetry and central moments features are extracted. Then,modified nearest neighbor fuzzy classification algorithm is designed for different feature to contribute theirpredominance because the stability and separability of each feature are different. The membership degree ofeach feature is modified by Fisher discriminant weighting differently. The result of experiment with theactual measured data of 10 ship targets indicates that the proposed classifier is very useful in ship targetclassification.
机构地区 海军
出处 《舰船科学技术》 2010年第2期68-72,82,共6页 Ship Science and Technology
关键词 高分辨距离像 Fisher判决率 修正最近邻模糊分类器 中心矩 high resolution range profile ( HRRP) Fisher discriminant modified nearest neighborfuzzy classification algorithm central moments
  • 相关文献

参考文献8

二级参考文献40

  • 1邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐[J].电子学报,2001,29(z1):1807-1811. 被引量:30
  • 2Sun Y, Liu Z, Todorovic S, et al. Adaptive boosting for SAR automatic target recognition[J]. IEEE Trans Aerospace and Electronic Systems, 2007, 43 (1): 112-125.
  • 3Yang Y, Qiu Y, Lu C. Automatic target classification-experiments on the MSTAR SAR images[C]// IEEE Conf Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, and First ACIS International Workshop on Self-Assembling Wireless Networks. [S. l. ]: Maryland, 2005: 2-7.
  • 4Hao W, Luo J. Generalized multiclass AdaBoost and its applications to multimedia classification [C]// IEEE Conf Computer Vision and Pattern Recognition Workshop. New York, USA:[s.n. ], 2006.- 113.
  • 5Nishii R, Equchi S. Supervised image classification based on AdaBoost with contextual weak classifiers [C]//IEEE Conf Geoseience and Remote Sensing Symposium. Anchorage, Alaska, USA.. [s. n. ], 2004, 2: 1467-1470.
  • 6Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery[C]//Proe SPIE Conf Algorithms for Synthetic Aperture Radar Imagery XII. Orlando, FL, USA: [s. n], 2005, 5808: 314-325.
  • 7Ross T D, Worrell S W, Velten V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set[C]//Proc SPIE Conf Algorithms for Synthetic Aperture Radar Imagery V. Orlando, FL, USA: [s. n], 1998, 3370: 566-573.
  • 8Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition[J]. IEEE Trans Aerospace and Electronic Systems, 2001, 37 (2): 643-654.
  • 9Xing M D,Bao Z, Pei B N. The properties of high-resolution range profiles[J]. Optical Engineering, 2002, 41(2) :493 - 504.
  • 10Oppenheim A V, Lim J S . The importance of phase in signal [J]. The Proceeding of IEEE, 1991,5 : 529 - 541.

共引文献50

同被引文献10

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部