期刊文献+

气浮—生化—混凝沉淀工艺处理电镀废水研究 被引量:4

Study on the treatment of electroplating wastewater by air-floatation-biochemical treatment-coagulative precipitation process
下载PDF
导出
摘要 利用气浮—生化—混凝沉淀工艺对电镀废水中的有机污染物进行处理,探讨了各工艺参数对COD去除效果的影响。实验结果表明:气浮处理在减轻后续接触氧化反应器的运行负荷的同时也提高了整个工艺的抗冲击能力。COD去除率随气浮时间的增加而增加,当气浮时间为70min时,COD去除率17.5%。在生化处理阶段,当HRT=10h、DO=4mg/L、pH=7和温度为30℃时,COD去除率55%。实验还研究了pH、PAM和聚铝浓度对混凝沉淀结果的影响,发现pH=9、PAM质量浓度为0.25mg/L、聚铝为2mg/L时,COD去除率11%。最终的实验结果表明:经该工艺处理后的废水,总COD去除率67.6%,出水COD为80mg/L,达到国家新的排放标准(GB21900—2008)。 Electroplating wastewater has been treated by air-floatation-biochemical treatment-coagulative precipitation process. The effect of the parameters on the wastewater COD removal is discussed. The experimental results show that air-floatation can not only decrease the running load of the sequent contact oxidation reactor COD, but improve the impact resistance capacity of the whole process. The COD removal rate increases with the increase of air- floatation time. The COl) removal rate reaches 17.5% , when air-floatation time is 60 min. During biochemical treatment, the COD removal rate reaches 55% when HRT, DO, pH and temperature are 10 h, 4 mg/L, 7 and 30 ℃, respectively. The effects of pH, PAM and polyaluminum concentration on coagulative precipitation has also been studied. The results indicates that the optional conditions are obtained as pH=9, PAM concentration 0.25 mg/L and polyaluminum concentration 2 mg/L, by which the COD removal rate reaches 11%. The final results show that the total COD removal rate reaches 67.6% and the effluent COD reaches 80 mg/L, which meets the newest National Discharge Standard (GB 21900-2008 ).
出处 《工业水处理》 CAS CSCD 北大核心 2010年第2期31-34,共4页 Industrial Water Treatment
关键词 电镀废水 气浮 生化处理 混凝沉淀 electroplating wastewater air-floatation biochemical treatment eoagulative precipitation
  • 相关文献

参考文献8

  • 1Vijayaraghavan K, Jegan J, Palanivelu K, et al. Biosorption of copper, cobalt and nickel by marine green alga Ulva reticulata in a packed column[J]. Chemosphere,2005, 60(3): 419-426.
  • 2Solisio C, Lodi A, Veglio F. Bioleaching of zinc and aluminium from industrial waste sludges by means of Thiobocillus ferrooxidans [J]. Waste Management, 2002, 22(6): 667-675.
  • 3Volesky B, Weber J, Park J M. Continuous-flow metal biosorption in a regenerable Sargassum column [J].Water Research, 2003, 37 (2) :297-306.
  • 4Chen S S, Li C W, Hsu H, et al. Concentration and purification of chromate from electroplating wastewater by two-stage electrodialysis processes[J]. Hazardous Materials, 2009,161 (2) : 1075- 1080.
  • 5Kuraar R, Bishnoi N R, Bishnoi G K. Biosorption of chromium (Ⅵ) from aqueous solution and electroplating wastewater using fungal biomass[J]. Chemical Engineering Journal, 2008, 135(3) :202-208.
  • 6Ansari M I, Malik A. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater[J].BioresourceTechnology, 2007, 98(16): 3149-3153.
  • 7GB21900-2008,电镀污染物排放标准[S].
  • 8GB11914-1989.水质化学需氧量的测定重铬酸钾法[S].[S].,..

共引文献43

同被引文献56

引证文献4

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部