期刊文献+

基于修正交叉视觉皮质模型的图像分割方法 被引量:5

A New Image Segmentation Method Based on Modified Intersecting Cortical Model
下载PDF
导出
摘要 提出了一种基于修正交叉视觉皮质模型(MICM)的图像自适应分割新方法.根据待分割图像的自身特性,自适应地设定参数,并以互信息量为目标函数选取最佳分割结果.该方法解决了针对不同的图像需要人工设定交叉皮质模型(ICM)参数和需要人工选取最佳分割结果的2个问题.实验结果表明,与通过大量实验获得模型参数的脉冲耦合神经网络(PCNN)基本模型和ICM基本模型相比,MICM与其综合评价函数值相近;与模糊聚类分割算法和最大类间方差(OTSU)算法相比,MICM算法有较明显的视觉优势,并且其综合评价函数值也分别提高了约15%和13%. An image segmentation method based on the modified intersecting cortical model (MICM) is proposed to set the MICM parameters adaptively according to the different characteristics of images and choose the optimal segmentation results automatically, which are two main obstacles for the basic intersecting cortical model(ICM) to be used in practice. Experiments show that the comprehensive evaluation value of MICM is close to those of basic pulse coupled neural network(PCNN) and basic intersecting cortical model. Compared with the fuzzy C-means algorithm and OTSU algorithm, MICM is of visually better segmentation and the comprehensive evaluation value of MICM increases by approximately 15% and 13% respectively.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2010年第1期56-60,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金项目(60702031 60873241) 国家高技术研究发展计划项目(2008AA01Z217 2007AA01Z145 2007AA01A127)
关键词 图像分割 交叉视觉皮质模型 自适应 互信息量 image segmentation intersecting cortical model self-adaptive mutual information
  • 相关文献

参考文献12

  • 1章毓晋.图像处理和分析[M].北京:清华大学出版社,1999..
  • 2Kinser J M. Image signatures: classification and ontology [ C]//Proceedings of the 4th IASTED International Conference on Computer Graphics and Imaging. Hawaii: ACTA Press, 2001: 230-255.
  • 3Ekbld U, Kinser J M. Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars and nuclear explosion tests[ J]. Signal Processing, 2004, 84(7) : 1131-1146.
  • 4Ekbld U, Kinser J M, Atmer J, et al. The intersecting cortical model in image processing [ J ]. Nuclear Instruments and Methods in Physics Research A, 2004, 525 (2) : 392-396.
  • 5Johnson J L, Padgett M I. PCNN models and applications [J]. IEEE Trans on Neural Networks, 1999, 10(3): 480-498.
  • 6马义德,张红娟.PCNN与灰度形态学相结合的图像去噪方法[J].北京邮电大学学报,2008,31(2):108-112. 被引量:20
  • 7Xu Zhiping, Zhong Yiping, Zhang Shiyong. Artificial visual cortical responding model in image semantic processing [ C] // Proceedings of ACS/IEEE International Conference on Computer Systems and Applications. Amman: IEEE Computer Science Press, 2007 : 722-725.
  • 8毕英伟,邱天爽.一种基于简化PCNN的自适应图像分割方法[J].电子学报,2005,33(4):647-650. 被引量:58
  • 9卢振泰,吕庆文,陈武凡.基于最大互信息量的图像自动优化分割[J].中国图象图形学报,2008,13(4):658-661. 被引量:13
  • 10侯格贤,毕笃彦,吴成柯.图象分割质量评价方法研究[J].中国图象图形学报(A辑),2000,5(1):39-43. 被引量:68

二级参考文献61

共引文献541

同被引文献36

  • 1张煜东,王水花,周振宇,王训恒,韦耿,霍元恺,吴乐南.基于HVS与PCNN的彩色图像增强[J].中国科学:信息科学,2010,40(7):909-924. 被引量:10
  • 2姚峰林,詹海英,李元宗.机器视觉中的边缘检测技术研究[J].机械工程与自动化,2005(1):108-110. 被引量:39
  • 3周昌雄,于盛林.基于区域内一致性和区域间差异性的图像分割[J].中南大学学报(自然科学版),2005,36(4):668-672. 被引量:7
  • 4Johnson J L,Padgett M L.PCNN Models and Applications[J].IEEE Trans.on Neural Networks,1999,10(3):480-498.
  • 5Kinser J M.Image Signatures:Classification and Ontology[C] //Proc.of the 4th International Conference on Computer Graphics and Imaging.Hawaii,USA:ACTA Press,2001.
  • 6Kuntimad G,Ranganath H S.Perfect Image Segmentation Using Pulse Coupled Neural Networks[J].IEEE Trans.on Neural Networks,1999,10(3):591-598.
  • 7马义德,绽琨,王兆滨.脉冲耦合神经网络图像处理[M]2版.北京:高等教育出版社,2008.
  • 8LAM L, LEE S W. Thinning methodologies - a comprehensive sur- vey[ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1992, 14(9) : 869 -895.
  • 9杨亚军,李言俊,张红林,等.循环侧抑制网络侧抑制系数的选取及其在图像预处理中的应用[J].弹箭与制导学报,1998(3):15-17.
  • 10Hebb D O. The organization of behavior[M]. New York: Wiley, 1949: 201-209.

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部