期刊文献+

限定领域的自动问答系统研究 被引量:3

Research on Automatic Question-and-Answering Systems in Restricted Domains
下载PDF
导出
摘要 目前,自然语言处理系统由于缺乏语义信息及知识理解和推理能力,因此存在很多缺陷,在自动问答领域中很难分清用户表达的真正意图,并给出用户满意的答案.本文就此给出基于句法语义的问句分析方法,采用本体构建技术构建答案库,在此基础上进行领域知识语义推理,实现智能问答.本研究以黄山旅游为限定领域建立问答系统,试验结果表明多策略的方法是有效的. Current natural language processing systems have some shortcomings because they lack knowledge understanding and reasoning abilities. These systems cannot catch the exact meaning of the users, thus they cannot meet their needs. Our research thinks out an approach based on syntactic and semantic analysis for questions analysis. An answering bank is established by means of ontology construction technique. On this basis, semantic reasoning and intellect answering can be achieved. Here, ‘Tour in Mount Huangshan' is chosen as the restricted domain, and a question-and-answering system is constructed. The experiment shows that the system is effective.
出处 《北方工业大学学报》 2010年第1期23-27,共5页 Journal of North China University of Technology
基金 北京市教委科研计划项目(KM201010009008) 北方工业大学校科研基金资助项目(英汉多词表达的抽取与语义解释研究) 北京市属高等学校人才强教计划资助项目(PHR201007121)
关键词 问答系统 本体构建 句法分析 question-and-answering system ontology construction syntactic analysis
  • 相关文献

参考文献10

二级参考文献77

  • 1Sowa J F. Conceptual Structures: Information Processing in Mind and Machine[M]. Reading, MA: Addison-Wesley,1984.
  • 2Sowa J F. Knowledge Representation: Logical, Philosophical,and Computational Foundations [M]. Pacific Grove, CA:Brooks Cole Publishing Co,2000.
  • 3Petersen U. Conoeptual Structure[EB/OL]. http://www.huminf.aau. dk/cg, 2002.
  • 4Knappe R,Bulskov H,Andreasen T. Similarity Graphs[A]. in Zhong N, Ras Z W, Tsumoto S, Suzuki E. 14th International Symposium on thodologies for Intelligent Systems, ISMIS 2003[C]. Maebashi, Japan: [s. n.],2003.
  • 5Na Seung-Hoon, Kang In-Su, Lee Sang-Ycol. Question Answering Using a WordNet-based Answer Type Taxonomy[A]. Proceeding of the 11th Text Retrieval Conference[C].Gaithersburg, USA: [s. n.],2003.
  • 6刘群..计算所汉语词法分析系统[EB/OL]..http://www.ict.ac.cn/freeware,,2003..
  • 7[8]Ulf Hermjakob. Parsing and Question Classification for Question Answering. Proceeding of the workshop on Open-Domain Question Answering at ACL-2001
  • 8[9]Eugene Agichtein, Steve Lawrence, Luis Gravano. Learning Search Engine Specific Query Transformations for Question Answering. ACM 2001,169- 178
  • 9[10]Soo-Min Kim, ae-Ho Baek, Sang-Beom Kim, Hae-Chang Rim Question Answering Considering Semantic Categories and Co-occurrence Density. Proceedings of the night Text Retrieval Conference (TREC-9)
  • 10[11]Marius Pasca, Sanda Harabagiu. High-Performance Question/Answering. 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval ( Sigir-01 ). New Orleans, LA. September 9 - 13,2001

共引文献219

同被引文献18

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部