期刊文献+

基于ITAFSVM的微阵列数据特征选择和分类 被引量:2

Automatic Feature Selection and Classification of Microarray Data Based on ITAFSVM
下载PDF
导出
摘要 支持向量机已经被成功应用于基因表达谱数据分析。但是,仍有开放问题需要解决:①支持向量机不能自动进行基因表达谱数据的特征选择;②支持向量机的参数优选没有简单有效的办法。一种新型具有良好特性的支持向量机——全间隔自适应模糊支持向量机(TAFSVM)被提出。并且提出一种新的遗传算法——智能遗传算法(IGA)来设计一个TAFSVM分类器,称为ITAFSVM,同时优化TAFSVM参数集和特征选择,并且结合10-fold交叉验证来确定其泛化能力。最后将ITAFSVM应用于四种基因表达谱数据集。通过与进化支持向量机(ESVM)方法、粗糙集与径向基神经网络组合(RBF-RBFNN)方法进行了比较,实验结果表明运用ITAFSVM不仅可以自动进行基因表达谱数据特征选择,而且分类精度和稳定性都较高,速度更快。 SVM has been successfully employed to solve the analysis of gene expression data. However, there are still open issues which need to be addressed : (1) SVM does not offer the mechanism of automatic internal relevant feature selection; (2) There are no simple and effective means to confirm the appropriate parameters setting of SVM. In this study, total margin-based adaptive fuzzy support vector machine (TAFSVM) which has good quality is proposed. In addition, it is proposed an evolutionary approach to design a TAFSVM-based classifier ( named ITAFSVM) by simultaneous optimization of automatic feature selection and parameters tuning using an intelligent genetic algorithm (IGA) , combined with 10-fold crossvalidation regarded as an estimator of generalization ability. Subsequently, the model of ITAFSVM is used to analyze four gene expression datasets. Comparisons with evolutionary support vector machine and a combination of rough-based feature selection and RBF neural network are reported. The experimental results indicate that the proposed ITAFSVM model can not only accomplish automatic feature selection, but also achieve higher classification accuracy, stable and faster speed.
作者 戴宏亮
出处 《中山大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期37-42,47,共7页 Acta Scientiarum Naturalium Universitatis Sunyatseni
基金 国家自然科学基金资助项目(10771220) 教育部高等学校博士点科研基金资助项目(SRFDP-20070558043)
关键词 全间隔自适应模糊支持向量机 智能遗传算法 基因表达谱 分类 微阵列 total margin-based adaptive fuzzy support vector machine intelligent genetic algorithms gene expression classification microarray
  • 相关文献

参考文献27

  • 1BALDI P, BRUNAK S. Bioinformatics: The machine learning approach [ M ]. 2nd ed. Cambridge: MIT Press, 2001.
  • 2BLUM A, LANGLEY P. Selection of relevant features and examples in machine learning [ J ]. Artif Intell, 1997, 97:245 -271.
  • 3DASH M, LIU H. Consistency-based search in feature selection [ J]. Artif Intell, 2003, 151 : 155 - 176.
  • 4GUH L, SONG Q, KASABOV N. A novel feature selection method to improve classification of gene expression data [ C ]//Proc 2nd Asia-Pacific Bioinf Conf, 2004 : 161 - 166.
  • 5KOLLER D, SAHAMI M. Toward optimal feature selection [ C ]// Proc Int Conf Mach Learning, 1996:284 - 292.
  • 6KOHAVI R, JOHN G. H. Wrappers for feature subset selection [ J]. Artif Intell, 1997, 97:273 - 324.
  • 7NICHOLAS K. Wrapper induction: efficiency and expressiveness [ J ]. Artificial Intelligence, 2000, 118 : 15 - 68.
  • 8SEMEH A, LINDSAY B, ASOKE K. Investigation of self-organizing oscillator networks for use in clustering microarray data [J]. IEEE Transactions on Nanobioscience, 2008,7 ( 1 ) :65 - 79.
  • 9CHIANG J H, HO S H. A combination of rough-based feature selection and RBF neural network for classification using gene expression data [ J]. IEEE Transactions on Nanobioscience, 2008,7 ( 1 ) :91 - 99.
  • 10TAVAZOIE S, HUGHES J D, CAMPBELL M J, et al. Systematic determination of genetic network architecture [J]. Nature Genet, 1999, 22:281-285.

同被引文献22

  • 1张娜,赵泽丹,包晓安,钱俊彦,吴彪.基于改进的Tent混沌万有引力搜索算法[J].控制与决策,2020,35(4):893-900. 被引量:69
  • 2GOLUB T R,SLONIM D K,TAMAYO P,et al. Molecular classification of cancer: class discovery and class predic- tion by gene expression monitoring [ J ]. Science, 1999, 286(5439) : 531-537.
  • 3ALON U,BARKAI N, NOTFERMAN D, et al. Broad pat- terns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [ J ]. Proceedings of the National Academy of Sci- ences, 1999,96(12) : 6745-6750.
  • 4LU C, DEVOS A, SUYKENS J, et al. Bagging linear sparse bayesian learning models for variable selection in cancer diagnosis information technology in biomedicine [ J ]. IEEE Transactions on Information Technology in Bi- omedicine ,2007,11 ( 3 ) : 338-347.
  • 5CHO S B, WON H. Cancer classification using ensemble of neural networks with multiple significant gene subsets [ J]. Applied Intelligence ,2007,26( 3 ) : 243-250.
  • 6HELAMN P, VEROFE R, ATLAS S R,et al. A bayesian network classification methodology for gene expression data [ J ]. Journal of Computational Biology, 2004,11 ( 4 ) : 581-615.
  • 7LIU K H, XU C G. A genetic programming-based ap- proach to the classification of muhiclass microarray data- sets [ J ]. Bioinformatics ,2009,25 ( 3 ) : 331-337.
  • 8WANG L,ZHU J,ZOU H. Hybrid huberized support vec- tor machines for microarray classification and gene selec- tion [ J ]. Bioinformatics,2008,24(3) : 412-419.
  • 9ZHANG B T. Hypernetworks: A molecular evolutionary ar- chitecture for cognitive learning and memory [ J ]. IEEE Comoutational Intelligence Magazine ,2008,3 ( 3 ) : 49-63,.
  • 10LEE J H, LEE B, KIM J S, et al. A molecular evolutionary algorithm for learning hypernetworks on simulated DNA computers [ C ]//Proceedings of the IEEE Congress on Evolutionary Computation. New Orleans : IEEE Press, 2011 : 2845-2852.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部