期刊文献+

一类具有HollingⅡ型功能性反应的捕食者-食饵系统正周期解的存在性 被引量:2

Existence of Positive Periodic Solution for a Predator-Prey System with Holling Type Ⅱ Functional Response
下载PDF
导出
摘要 研究了一类具HollingII型功能性反应的捕食者一食饵系统非平凡周期解的存在性,其中捕食者种群具有密度制约,食饵种群服从Hallam增长,得到了存在正周期解的充分性条件. The existence of positive periodic solutions for a predator-prey system with Holling II type functional response is researched, in which predator has density-dependent effect and the prey obeys the growth law of Hallam. The sufficient conditions of positive periodic solution are obtained.
出处 《北华大学学报(自然科学版)》 CAS 2010年第1期19-23,共5页 Journal of Beihua University(Natural Science)
基金 国家自然科学基金资助项目(10771048)
关键词 捕食者-食饵系统 HollingⅡ型功能性反应 周期解 Hallam增长 prey-predator system Holling II type functional response periodic solution Hallam growth
  • 相关文献

参考文献4

二级参考文献13

  • 1陈兰荪 井竹君.捕食者-食饵相互作用微分方程的极限环存在性和唯一性[J].科学通报,1984,24(9):521-523.
  • 2Cao Y,Math Biosci,1993年,118卷,197页
  • 3Kuang Y,Delay Differential Equations with Applications in Population Dynamics,1993年
  • 4He X Z,J Math Anal Appl,1990年,28卷,355页
  • 5Li Y K,Proc Am Math Soc,1999年,127卷,5期,1331页
  • 6He X Z,J Math Anal Appl,1996年,198卷,355页
  • 7Hsu S B,SIAM J Appl Math,1995年,55卷,763页
  • 8陈兰荪,科学通报,1984年,24卷,9期,521页
  • 9Meng Fan, Ke WangDepartment of Mathematics, Key Laboratory for Vegetation Ecology of the Ministry of Education of China, Northeast Normal University, Changchun 130024, China.Periodicity in a “Food-limited” Population Model with Toxicants and Time Delays[J].Acta Mathematicae Applicatae Sinica,2002,18(2):309-314. 被引量:8
  • 10黄建民.食饵按广义Logistic生长的Holling(Ⅱ)型功能反应捕食者──食饵模型[J].华南师范大学学报(自然科学版),1996,28(4):90-95. 被引量:3

共引文献74

同被引文献17

  • 1张红雷 ,祝英杰 .具有功能性反应的Holling Ⅲ类捕食系统的定性分析[J].北华大学学报(自然科学版),2005,6(1):7-11. 被引量:1
  • 2Clark C W. Mathematical Bioeconomics : the Optimal Menagement of Renewable Resources [ M ]. New York : John Whiley, 1976.
  • 3Kar T K. Management of a Fishery Based on Continuous Fishing Effort[ J ]. Nonlinear Analysis:Real World Applications ,2004, 5:629-644.
  • 4Kar T K. Conservation of a Fishery through Optimal Taxation : a Dynamic Reaction Model [ J ]. Communications in Nonlinear Science and Numerical Simulation,2005,10 : 121-131.
  • 5Moussaoui A, Bassaid S, Dads EL H A. The impact of water level fluctuations on a delayed prey-predator model[ J ]. Non- linear Analysis : Real World Applications ,2015,21 : 170-184.
  • 6Maynard-Smith J. Models in Ecology[ M ]. Cambridge:Cambridge University Press, 1974.
  • 7Holling C S. The functional response of predators to prey density and its role in mimicry and population regulation [ J ]. Mem Ent Soc Can, 1965,97 (45) : 1-60.
  • 8Smith F E. Population dynamics in Daphnia magna and a new model for population growth [ J ]. Ecology, 1963,44 (4) :651 -663.
  • 9Gilpin M E, Ayala F J. Global models of growth and competition [ J ]. Proc Nat Acad Sei, 1973,70 (12) :3590-3593.
  • 10Gaines R E, Mawhin J L. Coincidence Degree and Nonlinear Differential Equations [ M ]. New York :Springer-Verlag, 1977.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部