期刊文献+

离散时间代数Riccati方程解矩阵的界 被引量:2

Bounds of the solution matrix of the discrete time algebraic Riccati equatio
下载PDF
导出
摘要 研究了一般离散时间代数Riccati方程(GDTARE)的解矩阵的估计问题。利用矩阵特征值的性质等推导出GDTARE的解矩阵的上下界,并建立了求解上下界的迭代格式,使用迭代格式可对上下界进行改进。最后,通过比较分析和算例验证说明了本文所得结果较已有研究结果更具有一般性和较小的保守性。 The estimation problem of the solutions of general discrete time algebraic Riccati equations (GDTARE) is discussed. The upper and lower bounds of solution matrices for GDTARE were given by applying the properties of matrices and their eigenvalues, and an iteration format, which can be used to improve the lower and upper bounds effectively, was established. Finally, it is shown that our results are more general and less conservative than the existing ones by comparison and the numerical example.
出处 《电机与控制学报》 EI CSCD 北大核心 2010年第2期103-106,共4页 Electric Machines and Control
基金 国家自然科学基金资助项目(10471031 10771047)
关键词 离散时间代数Riccati方程 解矩阵 解矩阵的界 迭代格式 discrete time algebraic Riccati equation solution matrix solution matrix bounds iteration format
  • 相关文献

参考文献13

二级参考文献29

  • 1Mrabti M.Benseddik M. Bounds for the eigenvalues of the solution of the unified algebraic Riccati matrix equation[J]. System and Control Letters. 1995,24(5) : 345 -349.
  • 2Suchomski P. Numerical conditioning of delta-domain Lyppunov and Riccati equations[J]. IEE Proc. Control Theory Applications. 2001.148(6) : 497 - 501.
  • 3Middleton R H. Goodwin G C. Digital Control and Estimation: A Unified Approach[M]. Englewood Cliffs. NJ: Prentice-Hall. 1990.
  • 4Amir-Mocz A R. Extreme properties of eigenvalues of Hermitian transformation and singular values of the sum and the product of linear transformations[J]. Duke. Math. J., 1956,23:463-476.
  • 5Kwon W H,Moon Y S,Ahn S C. Bounds in algebraic Riccati and Lyapunov equations:a survey and some new results[J]. International Journal of Control, 1996,64(3):377 -389.
  • 6Lee C H. On the matrix bounds for the solution matrix of the discrete algebraic Ricdati equation[J]. IEEE Trans Circuits Systems-1: Fundamental Theory Applications, 1996,43(5):402-407.
  • 7Zhang Duanjin,Information Control,1998年,27卷,1期,23页
  • 8Le C H,IEEE Trans Circuits Syst I Fundamental Theory Appli,1996年,43卷,5期,402页
  • 9Wang S D,IEEE Trans Automat Control,1986年,31卷,7期,654页
  • 10KWAKERNAAK K,SIVAN R.Linear Optimal Control Systems[M].New York:Wiley,1972.

共引文献9

同被引文献11

  • 1K Kwakernaa, R Sivan. Linear Optimal Control Systems[M]. New York:Wiley, 1972.
  • 2Komaroff N,Shahian B. Lower summation bounds for the discrete Riccati and Lyapunov equations[J]. IEEE Trans on Automatic Control, 1992,37 (7) : 1 078-1 079.
  • 3Choi H H. Upper matrix bounds for the discrete algebraic Riccati equation[J]. IEEE Trans on Automatic Control, 2001,46(3) :504-508.
  • 4M Mrabti,M benseddik. Bounds for the Eigenvalues of the Solution of the Unified Matrix Equation[-J-]. System and Control Letters. 1995,24(5) :345-349.
  • 5P Suchomski. Numerical Conditioning of Delta-domain Lyapnov and Riccati Equation[J. IEE Proc. Control Theory Ap- plications,2001,148(6) :497-501.
  • 6R H Middleton,G C Goodwin. Digital Control and Estimation:A Unified Apptoach[-M. Engllewood Cliffs, NJ. Pren ticehall, 1990.
  • 7H K Wimmer. Monotonicity and Maximality of Solutions of Discrete-time Algebraic Riccati Equations[J. J Math. Sys terns Estimation Control, 1992,2 (2) . 125-128.
  • 8段福兴,沈轶.离散代数Riccati方程解的上下界[J].应用数学,2000,13(2):95-97. 被引量:5
  • 9卢延荣,廖福成,任金鸣,付海龙,盛超逸.离散时间多智能体系统的协调最优预见跟踪[J].工程科学学报,2018,40(2):241-251. 被引量:5
  • 10张端金,杨成梧,吴捷.Delta域Riccati方程研究:连续与离散的统一方法(英文)[J].控制理论与应用,1999,16(3):119-121. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部