期刊文献+

基于多输出支持向量回归机的有限元模型修正 被引量:12

Finit element model updating based on multi-outputs support vector regression
下载PDF
导出
摘要 为了克服神经网络以及单输出支持向量回归算法在有限元模型修正中的不足,提出了基于多输出支持向量回归算法的有限元模型修正方法。根据5-折交叉验证法选择支持向量回归机的参数,用均匀试验设计法构造样本,联合结构的动力和静力响应数据作为输入,多个设计参数作为输出,以支持向量回归机逼近输入输出二者之间的非线性映射关系,然后利用支持向量回归机的泛化推广能力,求解设计参数的目标值。空间网格结构数值模型的分析结果表明,该方法能同时修正多个设计参数,在少量样本的情况下具有较高的修正精度,为有限元模型修正提供了一种新的探索。 In order to overcome the shortcomings in finite element model updating by means of traditional neural network and single-output support vector regression,a new method based on multiple-outputs support regression algorithm was proposed.The parameters of support vector regression were selected according to 5-fold cross validation,the uniform design method was used to construct the samples,the static and dynamic response data were taken as the inputs and a number of design parameters as the outputs,the support vector regression machine was applied to approximate the mapping relationship between the inputs and outputs,and then the generalization ability of the support vector regression machine was utilized to get the target values of the design parameters.The result of numerical application to a space grid structure shows that:the method proposed can update a number of design parameters with high precision in the case of a small number of samples.It provides a new exploration for finite element model updating.
出处 《振动与冲击》 EI CSCD 北大核心 2010年第3期9-12,47,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50678052)
关键词 模型修正 支持向量机 多输出回归 均匀试验设计 5-折交叉验证 model updating support vector machine multiple-outputs regression uniform design 5-fold cross validation
  • 相关文献

参考文献12

二级参考文献123

  • 1杜树新,吴铁军.回归型加权支持向量机方法及其应用[J].浙江大学学报(工学版),2004,38(3):302-306. 被引量:22
  • 2张德文.改进Guyan~递推减缩技术[J].计算结构力学及其应用,1996,13(1):90-94. 被引量:13
  • 3华宏星,韩祖舜.有限元模型动力修正中的不同优化方法之比较[J].噪声与振动控制,1996,16(3):9-12. 被引量:2
  • 4陆秋海.基于应变模态理论的结构修改和损伤神经网络辨识法研究:博士学位论文[D].清华大学,1997.
  • 5[1]Vapnik V N.Statistical Learning Theory[M].NY:Springer-Verlag,1998.
  • 6[2]Smola A J.Learning with kerrnels[D].Berlin:Technische Universityat,1998.
  • 7[3]Chang C C,Lin C J.LIBSVM:A library for support vector machine[EB/OL].(2001-03-04).http://www.csie.ntu.edu.tw/~ cjlin/libsvm.
  • 8[5]WANG Jing,SUN Shuyi.Predictive control based on support vector machine model[C]//Proc 6th WCICA.Dalian:2006:1683-1687.
  • 9[6]Penlidis A,MacGregor J F,Hamielec A E.Polymer reaction engineering:Modelling considerations for control studies[J].Chem Eng J,1992,50:95-107.
  • 10Cawley P, Adams R D.The location of defects in structures from measurements of natural frequencies.Journal of Strain Analysis, 1979(14): 49-57.

共引文献303

同被引文献114

引证文献12

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部