期刊文献+

基于各向异性扩散方程的多层次并行图像去噪 被引量:1

A Hierarchical Parallel Image Denoising Algorithm Based on the Anisotropic Diffusion Equation
下载PDF
导出
摘要 针对利用各向异性扩散方程的去噪模型在求解中存在计算量大、耗时长、影响实时性等缺点,本文充分利用并行知识,提出了有效的解决方案。即基于各向异性扩散去噪模型,设计工作站机群平台,对噪声图像进行条状重叠的数据划分,以便实现算法节点内与节点间的两级并行策略:在机群结点内部采用共享内存结构,机群节点间采用分布内存结构,以二者的最优结合实现并行的层次结构化,从而得到一种高效的多层次并行图像去噪算法。实验结果表明,在基于混合模型的并行环境下,该算法能在一定程度上提高原算法的计算效率,不仅有效地缩短了运行时间,而且仍能获得与其相当的图像去噪质量。 According to the shortcomings of the anisotropic diffusion equation denoising model such as intensive calculations , time consuming, affecting the real-timeness, etc, a full use of parallelism knowledge is made to put forward an effective solution. Based on the idea of the anisotropic diffusion equation denoising model, we design a cluster of workstations and divide the noise image into overlapping strips to realize the two-level-parallel strategies:the intra-node cluster using shared memory structure, the inte-node cluster using the distributed memory structure, the optimal combination of the two is used to achieve the parallel structure. Finally an effective hierarchical parallel algorithm for denoising images is proposed. The test result shows that , based on the hybrid-model parallel environment, the operating efficiency of the algorithm can be greatly enhanced,and the running time can be greatly reduced, meanwhile the comparable denoising quality can still be obtained.
作者 郭静 田有先
出处 《计算机工程与科学》 CSCD 北大核心 2010年第4期49-51,66,共4页 Computer Engineering & Science
基金 重庆市科委基金资助项目(CST2005BB0061 KJ070514)
关键词 图像去噪 各向异性扩散方程 机群 并行算法 混合模型 image denoising anisotropic diffusion equation cluster parallel algorithm hybrid model
  • 相关文献

参考文献14

二级参考文献72

  • 1陈勇,陈国良,李春生,何家华.SMP机群混合编程模型研究[J].小型微型计算机系统,2004,25(10):1763-1767. 被引量:19
  • 2陈国良.更实际的并行计算模型[J].小型微型计算机系统,1995,16(2):1-9. 被引量:8
  • 3Rabenseifner R. Hybrid Parallel Programming on HPC Platforms[C]//Proc. of the 5th European Workshop on OpenME Aachen, Germany: [s. n.], 2003.
  • 4Valentina E Antonio L, Gabriel G,et al. Parallelism and Granularity in Time Dependent Approaches to Reactive Scattering Calculations[C]//Proc. of the Int'l Conf. on Parallel and Distributed Processing Techniques and Applications. Las Vegas, Nevada, USA: [s. n.], 2000.
  • 5[1]Chen Guo-liang, WU Jun-min and etc. Parallel computer architecture[M]. Beijing: Higher Education Press, 2002.
  • 6[2]Rajkumar Buyya. High performance cluster computing[M]. Beijing: Publishing House of Electronic Industry, 2001.
  • 7[3]Tanaka Y, Matsuda M,Ando M, Kazuto K and Sato M. Compas: a pentium pro PC-based SMP cluster and its experience[J]. IPPS Workshop on Personal Computer Based Networks of Workstations. 1998, 486-497.
  • 8[4]Lusk E L, Gropp W W. A taxonomy of programming models for symmetric multiprocessors and SMP clusters[C]. Proceedings of Programming Models for Massively Parallel Computers. 1995, 2-7.
  • 9[5]Chen Yong, Chen Guo-liang, Xu Yin-long and Shan Jiu-long. Implementation and evaluation of MPI+OpenMP programming model on Dawning3000[C]. Proceedings of the 21st IASTED International Conference. Calgary: ACTA Press. 2003, 732-737.
  • 10[7]Rajkumar Buyya. 高性能集群计算[M]. 北京:电子工业出版社,2001.

共引文献142

同被引文献8

  • 1徐志鹏,须文波.基于小波奇异性的纸病检测[J].中国造纸学报,2004,19(2):146-151. 被引量:4
  • 2吕岑,孙瑜.基于统计处理的纸病检测研究[J].中国造纸学报,2003,18(2):151-155. 被引量:3
  • 3Malamas E N,Petrakis E G M,Zervakis M,et al.A surveyon industrial vision systems,applications and tools[J].Im-age and Vision Computing,2003,21(2).
  • 4Jukka L.Surface defect detection with histogram-basedtexture features[C]//Proceedings of SPIE,2000.
  • 5Kang J,Yang G.The mathematical morphology of paper’sdefect detection method based on multi-scale and multi-structure elements morphology[C]//Proceedings of SPIE,2010.
  • 6Pietro P,Jitendra M.Scale-space and edge detection usinganisotropic diffusion[J].IEEE Transactions on PatternAnalysis and Machine Intelligence,1990,12(7).
  • 7Guillermo S.Geometric partial differential equations and im-age analysis[M].Cambridge:Cambridge University Press,2001.
  • 8亢洁,史忠科,杨刚.基于CB形态滤波的形态学纸病检测方法研究[J].中华纸业,2008,29(10):30-33. 被引量:4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部