期刊文献+

旅行社效益的动力学模型

Dynamical Model of Travel Bureau Benefit
下载PDF
导出
摘要 本文通过考虑与旅行与游客之间的关系,分析了它们之间的动力学行为,并依据Lotka-Volterra模型建立两者之间的动力学模型。其次依据常微分方程有关理论,得出"商家能够降低自身的收益底线,或者游客降低自身的评价分界线",会达到旅行社与游客双赢的结论。最后依据解空间的相图,来直观说明结论。 By analyzing the dynamical behavior between travel bureau and tourists, based on the Lotka-Volterra model, a mathematical model was built. Then the stability of equilibria were discussed, which obtain the result that the travel bureau benefit can be risen only by depressing the lowest anticipate income or by debating the appraise boundary of tourists. Finally, the result was depicted by the phase picture of the solution space.
作者 李科峰 韩涛
出处 《价值工程》 2010年第5期221-222,共2页 Value Engineering
关键词 旅行社效益 LOTKA-VOLTERRA模型 奇点的稳定性 travel bureau benefit Lotka-Volterra model stability of singularity
  • 相关文献

参考文献5

  • 1叶产谦.常微分方程讲义[J].高教,1985,2.
  • 2马知恩,周义仓.常微分方程定性与稳定性方法[M].科学出版社,2005,8.
  • 3Hsu SB, Huang TW, Global stability for a class of predator-prey systems,[J]. SIAM J. Appl.Math., 55(1995):763-83.
  • 4Y. Song, S. Yuan and J. Zhang, Bifurcation analysis in the delayed Leslie-Gower predator-prey system,[J]. Appl. Math. Modelling,(2009).
  • 5范丽,陈斯养,史忠科.一类广义Logistic单种群时滞模型的Hopf分支[J].兰州大学学报(自然科学版),2007,43(6):97-102. 被引量:4

二级参考文献8

  • 1马知恩 周义仓.常微分方程定性与稳定性分析[M].北京:科学出版社,2001..
  • 2HASSARD B,KAZARINOFF D,WAN Y. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press,1981.
  • 3GOPALSAMY K. Stability and oscillations in delay differential equations of population dynamics[M]. Dordrecht: Kluwer Academic Publishers, 1992.
  • 4SUN Cheng-jun,HAN Mao-an,LIN Yi-ping. Analysis of stability and Hopf bifurcation for a delayed logistic equation[J]. Chaos,Solitons & Fractals,2007,31(3): 672-682.
  • 5KUANG Y. Delay differential equations with applications in population dynamics[M]. Boston: Academic Press, 1993.
  • 6HALE 37 LUNEL S. Introduction to functional differential equations[M]. New York:Springer-Verlag, 1993.
  • 7STOKES A.On the stability of a limit cycle of autonomous functional differential equations[J]. Contributions to Differential Equations,1964,3:121- 140.
  • 8王爱丽,陈斯养,王东保.广义Logistic单种群时滞生态模型的渐近性[J].兰州大学学报(自然科学版),2004,40(2):8-12. 被引量:4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部