期刊文献+

基于强跟踪UKF的自适应SLAM算法 被引量:33

An Adaptive SLAM Algorithm Based on Strong Tracking UKF
下载PDF
导出
摘要 针对无迹卡尔曼滤波(UKF)缺乏在线自适应调整能力,导致系统状态估计精度较低的问题,提出了一种将强跟踪滤波器(STF)与UKF相结合的SLAM算法.该算法对于UKF中每个采样点采用STF进行更新,获得优化滤波增益,抑制噪声对系统状态估计的影响,使系统状态估计迅速收敛到真实值附近.仿真实验对比了当前几种SLAM算法在不同噪声环境下的性能,实验表明,基于强跟踪UKF的自适应SLAM算法具有更好的鲁棒性和自适应性. Unscented Kalman filter (UKF) is lack of adaptive on-line adjustment ability that seriously decreases the estimation accuracy of system state. To deal with this problem, this paper proposes an improved SLAM (simultaneous localization and mapping) algorithm that combines the strengths of strong tracking filter (STF) and UKF. Each sampling point of UKF is updated by STF, the effects of noises on system state estimation are suppressed by optimizing filter gains, and the system state estimation converges to real values quickly. Performances of several SLAM algorithm in different noisy environments are compared by simulation. The experimental results show that this adaptive SLAM algorithm based on STF and UKF is of better adaptability and robustness.
出处 《机器人》 EI CSCD 北大核心 2010年第2期190-195,共6页 Robot
基金 国家自然科学基金资助项目(60575033 60804020) 国家863计划资助项目(2007AA04Z227)
关键词 同时定位与地图创建 UKF-SLAM 强跟踪滤波器 自适应滤波 simultaneous localization and mapping UKF-SLAM strong tracking filter adaptive filter
  • 相关文献

参考文献12

  • 1Smith R, Self M, Cheeseman E Estimating uncertain spatial relationships in robotics[M]//Autonomous robot vehicles. New York, NY, USA: Springer-Verlag, 1990: 167-193.
  • 2LI Maohai,HONG Bingrong,LUO Ronghua.Mobile Robot Simultaneous Localization and Mapping Using Novel Rao-Blackwellised Particle Filter[J].Chinese Journal of Electronics,2007,16(1):34-39. 被引量:11
  • 3Australian Centre for Field Robotics. Source Code[DB/OL]. (2008-06-10) [2009-03-30]. http://www-personal.acfr.usyd. edu.au/tbailey/.
  • 4Julier S, Uhlmann J, Durrant-Whyte H E A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions on Automatic Control, 2000, 45(3): 477-482.
  • 5Sunderhauf N, Lange S, Protzel E Using the unscented Kalman filter in mono-SLAM with inverse depth parameterization for autonomous airship control[C]//IEEE International Workshop on Safety, Security and Rescue Robotics. Piscataway, NJ, USA: IEEE, 2007: 1-6.
  • 6Julier S J. The scaled unscented transformation[C]//American Control Conference. Piscataway, NJ, USA: IEEE, 2002: 4555- 4559.
  • 7Wang X, Zhang H. A UPF-UKF framework for SLAM[C]// IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2007: 1664-1669.
  • 8Kim C, Sakthivel R, Chung W K. Unscented FastSLAM: A robust and efficient solution to the SLAM problem[J]. IEEE Transactions on Robotics, 2008, 24(4): 808-820.
  • 9Shojaie K, Shahri A M. Iterated unscented SLAM algorithm for navigation of an autonomous mobile robot[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ, USA: IEEE, 2008: 1582-1587.
  • 10周东华,席裕庚,张钟俊.非线性系统带次优渐消因子的扩展卡尔曼滤波[J].控制与决策,1990,5(5):1-6. 被引量:138

二级参考文献1

  • 1邓自立,王建国.非线性系统的自适应推广的Kalman滤波[J]自动化学报,1987(05).

共引文献147

同被引文献246

引证文献33

二级引证文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部