期刊文献+

不完备决策表的启发式知识约简算法研究 被引量:2

Research on Heuristic Knowledge Reduction Algorithm for Incomplete Decision Table
下载PDF
导出
摘要 经典Rough集理论是基于完备信息系统的。然而在实际应用中,由于数据存取或数据处理方面的原因,决策表经常是不完备的,即存在缺值。为了处理不完备信息系统,Kryszkiewicz提出了基于容差关系的Rough集模型。在该模型下进行知识约简时,现有的算法一般都采用构造区分矩阵和相应区分函数的方法。该方法虽然可以求得所有约简,然而业己证明这是一个NP-hard问题,因此实践中更为可行的方法是利用启发式搜索算法求出最优或次最优约简。在文中提出属性的重要性定义,并以此作为启发式信息,设计一种完备的知识约简算法。 The classic theory of Rough sets is based on incomplete information systems. In practicing, decision tables are, however, usually incomplete due to the causes of data outputting or processing. That is to say, there are often default values. In order to deal with incomplete systems, Kryszkiewicz puts a Rough sets model on the basis of error tolerance relations. According to this model, constructing discernibility matrixes and discernibility functions are the familiar approach by the current knowledge reduction algorithms. By this means, all reductions can work out. But it has been proved that it is a problem of "NT-hard". So it is more effective when a heuristic search algorithm is used to attain the most optimized or the second most optimized reduction. In this paper, the importance of attributes is defined and used as heuristic information. Then a complete knowledge reduction algorithm is put forward.
出处 《计算机与现代化》 2010年第3期170-172,共3页 Computer and Modernization
基金 国家863资助项目(2007FJ4080)
关键词 ROUGH集 不完备决策表 知识约简 Rough sets incomplete decision table knowledge reduction
  • 相关文献

参考文献13

  • 1Kryszkiewicz M. Rough set approach to incomplete information systems [ J ]. Information Sciences,1998,1 (12) :39-49.
  • 2Kryszkiewicz M. Rules in incomplete information systems [ J ]. Information Sciences, 1999,1 ( 13 ) :271-292.
  • 3Stefanowski J, Tsoukias A. Valued tolerance and decision rules [ C ]//Proceedings of the 2000 International Conference on Rough Sets and Current Trends in Computing ( RSCTC 2000). Berlin Heidelberg : Springer-Verlag,2001 : 212-219.
  • 4Stefanowski J, Tsoukias A. Incomplete information tables and rough classification [ J ]. Computational Intelligence, 2001,17:545-566.
  • 5Leung Y, Li D. Maximal consistent blockque for rule acquisition in incomplete infomlation systems [ J ]. Information Sciences ,2003,153:85-106.
  • 6Skowron A, Rauszer C. The discernibility matrices and functions in information system [ C ]//Intelligent Decision Support Handbook of Applications and Advances of the Rough Sere Boston Dordrecht, London: Kluwer Academic Publishers,1992: 331-362.
  • 7Wong S K, Ziarko W. Optimal decision rules in decision table [ J ]. Bulletin of Polish Academy, 1985,33 ( 11-12 ) : 693 -696.
  • 8张文修.粗糙集理论与方法[M].北京:科学出版社,2008.
  • 9王国胤.Rough集理论在不完备信息系统中的扩充[J].计算机研究与发展,2002,39(10):1238-1243. 被引量:303
  • 10黄海 王国胤 胡峰 等.一种增量式属性约简算法.计算机科学,2005,32(8):14-15.

二级参考文献26

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2Pawlak Z.. Rough sets. International Journal of Computer and Information Sciences, 1982, 11(5): 341~356
  • 3Pawlak Z.. Rough Set: Theoretical Aspects of Reasoning about Data. Dordrecht: Kluwer Academic Publishers, 1991
  • 4Pawlak Z.. Rough set theory and its applications to data analysis. International Journal of Cybernetics and Systems, 1998, 29(7): 661~688
  • 5Ziarko W.. Variable precision rough sets model. Journal of Computer System Science, 1993, 46 (1): 39~59
  • 6Kowalczyk W.. Rough data modeling: A new technique for analyzing data. In: Polkowski L., Skowron A. eds.. Rough Sets in Knowledge Discovery 1: Methodology and Applications. Heidelberg: Physica-Verlag, 1998, 400~421
  • 7Kowalczyk W.. Analyzing temporal patterns with rough sets. In: Proceedings of the 4th European Congress on Intelligent Techniques and Soft Computing (EUFIT'96), Aachen, Germany, 1996, 139~143
  • 8Skowron A., Rauszer C.. The discernibility matrices and functions in information systems. In: Slowinski R. ed. Intelligent Decision Support-Handbook of Applications and Advances of the rough Sets Theory. Dordrecht: Kluwer Academic Publishers, 1992, 331~362
  • 9Pal S.K., Skowron A.. Rough-Fuzzy Hybridization: A New Trend in Decision-Making. Singapore: Springer-Verlag, 1999
  • 10Inuiguchi M.. Generalizations of rough sets: From crisp to fuzzy cases. In: Tsumoto S., Slowinski R., Komorowski H.J., Grzymala-Busse J.W. eds.. Rough Sets and Current Trends in Computing. Lecture Notes in Artificial Intelligence 3066, Berlin, Heidelberg: Springer-Verlag, 2004, 26~37

共引文献589

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部