期刊文献+

基于朴素基因表达式编程挖掘紧致函数 被引量:5

Mining Compact Function Based on Nave Gene Expression Programming
下载PDF
导出
摘要 基因表达式编程(GEP)是一种基因型和表现型相分离的进化新模型,为了挖掘紧致的函数关系,分析了进化系统各因素对挖掘紧致函数的影响,提出了带紧致压力的适应度函数来进化函数紧致解。实验表明,带有紧致压力的适应度函数能自动进化计算机程序,适合挖掘的紧致关系,在挖掘紧致函数中,朴素基因表达式编程(NGEP)比GEP提高效率21.7%,与不带压力的系统相比,GEP的平均压缩了31.2%,NGEP系统平均压缩了42.5%;NGEP较GEP更容易发现紧致解,且函数表达形式更容易理解,丰富了NGEP理论. Gene Expression Programming (GEP) is a new member of evolutionary algorithm family, and it is an artificial genotype/phenotype system. Aiming to discover compact mathematical functions for function finding, this study analyzes the factors that greatly affect the efficiency of GEP, proposes the fitness function with pressure parameter, and implements a naive gene expression programming (NGEP) for compact function mining tasks. Extensive experiments show that the proposed fitness function with compact pressure can automatically mine the compact functions as well as an alternative strategy to fred compact results, and NGEP boosts the convergence speed by 21.7% than GEP, in addition, the results are more understandable than that are found by GEP. Compared with the evolution system without compact pressure, the average compact rate are 31.2% in GEP and 42.5% in NGEP, respectively, which shows that NGEP is easier to fred compact results than GEP and the results are more comprehensive than traditional GEP.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第2期284-288,310,共6页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(60773169) 江苏技术师范学院博士启动资金(KYY09001)的资助
关键词 紧致压力 紧致解 函数发现问题 朴素基因表达式编程 compact pressure compact solving finding function problem naive gene expression programming
  • 相关文献

参考文献10

  • 1FERREIRA C. Gene expression programming: A new adaptive algorithm for solving problems[J]. Complex Systems, 2001, 13(2):87-129.
  • 2黄晓冬 唐常杰 李智 等.基于基因表达式编程挖掘函数关系.软件学报,2004,15:96-105.
  • 3朱明放,唐常杰,陈瑜,向勇,代术成.基于朴素基因表达式编程的函数自动建模[J].四川大学学报(工程科学版),2008(4):126-131. 被引量:7
  • 4DUAN Lei, TANG Chang-jie, WEI Da-gang, et al. Distance guided classification with gene expression programming [C]//ADMA 2006. [S.l.]: LNAI 4093, 2006: 239-246.
  • 5张赪,蔡之华.代价敏感的GEP分类算法实现[J].电子科技大学学报,2007,36(6):1319-1321. 被引量:3
  • 6陈瑜,唐常杰,叶尚玉,李川,姜钥,刘齐宏.基于基因表达式编程的自动聚类方法[J].四川大学学报(工程科学版),2007,39(6):107-112. 被引量:28
  • 7ZUO Jie, TANG Chang-jie, ZHANG Tian-qing. Mining predicate association rule by gene expression programming[C]//Proc of the 3rd International Conf for Web Information Age 2002 (WAIM '02). Berlin: Springer-Verlag, 2002: 92-103.
  • 8ZUO Jie, TANG Chang-jie, LI Chuan, et al. Time series prediction based on gene expression programming[C]//Proc of the 5th International Conf for Web Information Age 2004 (WAIM '04). Berlin: Springer-Verlag, 2004:55-64.
  • 9木村资生.分子进化的中性学说[M].陈建华,译.成都:成都科技大学出版社,1993.
  • 10FERREIRA C. Gene expression programming: mathematical modeling by an artificial intelligence[M]. 2nd Ed. Heidelberg: Berlin: Springer-Verlag, 2006.

二级参考文献30

共引文献49

同被引文献53

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部