期刊文献+

HHT方法在人体下肢表面肌电信号分析中的应用 被引量:4

Application of the HHT Method to the SEMG of the Lower Limb
下载PDF
导出
摘要 针对表面肌电信号是非线性非稳态信号的特点,为了得到信号的有效特征并对信号特征进行有效分析,采用HHT(Hilbert-Huang Transformation)分析方法,通过经验模态分解将信号分解为一组内蕴模态函数。基于各内蕴模态函数的频率特征的分析,对它们进行HHT变换建立表面肌电信号的时间-频率-能量三维Hilbert谱,进而得到信号的边际谱。文中给出基于经验模态分解阈值消噪方法,和小波阈值方法相比,其消噪效果明显,在抑制噪声的同时,能够较好保留信号边缘和细节信息。初步实验表明HHT方法为表面肌电信号的特征提取和模式识别提供了可靠的依据,具有很好的应用前景。 Surface electromyography (SEMG) was a nonlinear and nonstationary signal. In order to get effective features of the SEMG and analyze features, HHT method was applied. The signal could be decomposed by using the empirical mode decomposition (EMD) method into a series of intrinsic mode function (IMF) components, at the same time, the frequency of each IMF was analyzed. these IMFs were transformed into 3-D Hilbert spectra which exhibited the time-frequency-amplitude, and then the marginal spectra were obtained by integrating the Hilbert spectra with respect to time. A wavelet threshold filtering method based on EMD was proposed, this method has good effect on suppressing noise, comparing with wavelet threshold filter and has advantages of retaining edge and detail information. Experimental results show that HHT method provides reliable basis for the feature extraction and pattern recognition of SEMG of the lower limb and has a good prospect of application.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第3期297-302,共6页 Chinese Journal of Sensors and Actuators
基金 国家自然科学基金资助(60705010) 浙江省自然科学基金资助(Y1080854)
关键词 HILBERT-HUANG变换 表面肌电信号 时频谱 阈值消噪 Hilbert-Huang transform SEMG time-frequency spectrum threshold denoising
  • 相关文献

参考文献12

  • 1张瑞红,王人成,金德闻,张济川.人体下肢表面肌电信号的检测与分析[J].清华大学学报(自然科学版),2000,40(8):73-76. 被引量:16
  • 2Ville. Theories et Applications de al Notion de Signal Analytique [J]. Cables et Transmission, 1948, 2 (A) : 61 - 74.
  • 3Morlet J, et al. Wave Propagation and Sampling Theory-Part: Sampling Theory and Complex Waves[ J ]. Geophysics, 1982, 47 (2) : 222 - 236.
  • 4Qin shuren, et al. Research of Wavelet Transform Instrument System for Signal Analysis[J]. Chinese Journal of Mechanical Engineering. 2000, 7(13) : 114 -121.
  • 5Huang N E, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[ C]// Proc R Soc Lond A, 1998, 454(A) : 903 -995.
  • 6Echererria J. Application of Empirical Mode Decomposition to Heart Rate Variability Analysis [ J ]. Medical & Biological Engineering & Computing, 2001, 39(4) : 471 -479.
  • 7郝大海.基于Hilbert-Huang变换的发动机振动信号特征提取[J].兵工自动化,2007,26(12):81-83. 被引量:5
  • 8黄海,潘家强.基于Hilbert-Huang变换的基音周期提取方法[J].声学学报,2006,31(1):35-41. 被引量:11
  • 9Yang Z H, Huang D, Yang L H. A Novel Pitch Period Detection Algorithm Based on Hilbert-Huang Transform [ Z ]. LNCS 3338, 2004 : 586 - 593.
  • 10范影乐,俞祁焰,李轶,庞全.基于Hilbert-Huang变换的含噪语音特征分析[J].传感技术学报,2007,20(10):2288-2293. 被引量:3

二级参考文献43

共引文献100

同被引文献88

引证文献4

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部