期刊文献+

THE PROBABILITY HYPOTHESIS DENSITY FILTER WITH EVIDENCE FUSION

THE PROBABILITY HYPOTHESIS DENSITY FILTER WITH EVIDENCE FUSION
下载PDF
导出
摘要 The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively. The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper, we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information, thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity, state, and number effectively.
机构地区 School of Automation
出处 《Journal of Electronics(China)》 2009年第6期746-753,共8页 电子科学学刊(英文版)
基金 Supports in part by the NSFC (No. 60772006, 60874105) the ZJNSF(Y1080422, R106745) NCET (08- 0345)
关键词 Probability Hypotheses Density (PHD) Dempster-Shafer (DS) evidence Uncertain in-formation Evidence PHD (E-PHD) Evidence Gaussian Mixture PHD (E-GMPHD) 证据理论 滤波器 密度 概率 Dempster 高斯混合 多目标跟踪 过滤器
  • 相关文献

参考文献10

  • 1D. A. Dewasurendra,,P. H. Bauer,,K. Premarane.Evidence filtering[].IEEE Transactions on Signal Processing.2007
  • 2Dempster AP.Upper and lower probabilities induced by a multivalued mapping[].Annals of Mathematics.1967
  • 3R Mahler.Unified data fusion:fuzzy logic,evidence and rules[].Proceedings of SPIE the International Society for Optical Engineering.1996
  • 4I. R. Goodman,,R. P. S. Mahler,,H. T. Nguyen.Mathematics of Data Fusion[]..1997
  • 5Mahler R.Unified bayes multitarget fusion of ambiguous data sources[].ProcIEEE Int’l Confon Integration of Knowledge IntensiveMulti-Agent Systems.2003
  • 6Mahler, P,S Ronald.Multitarget Bayes Filtering via First-Order Multitarget Moments[].IEEE Transactions on Aerospace and Electronic Systems.2003
  • 7Ba-Ngu Vo,Wing-Kin Ma.The Gaussian Mixture Probability Hypothesis Density Filter[].IEEE Transactions on Signal Processing.2006
  • 8Ronald Mahler.A theory of PHD filters of higher order in target number[].Signal Processing Sensor Fusion and Target Recognition XV.2006
  • 9Ba-Tuong Vo,Ba-Ngu Vo,Antonio Cantoni.Analytic implementations of the cardinalized prob- ability hypothesis density filter[].IEEE Transactions on Signal Processing.2007
  • 10L. Lin,Y. Bar-Shalom,T. Kirubarajan.Track labeling and PHD filter for multitarget tracking[].IEEE Transactions on Aerospace and Electronic Sys- tems.2006

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部