摘要
依据分数阶线性系统的稳定性理论,研究了具有双重混沌吸引子的Newton-Leipnik系统取不同分数阶时的动力学行为.研究表明该系统具有逆向Hopf分岔过程,即随着阶数的下降,分数阶Newton-Leipnik系统由双重混沌吸引子突变为单吸引子,其动力学行为将由混沌态历经短暂的周期态后收敛于稳定的平衡点.
Based on the stability theory of fractional order linear systems, the dynamic be havior of the fractional order Newton-Leipnik system with double attractor is studied. Our research shows that the fractional order Newton-Leipnik system involves reverse Hopfbifurcation course, i.e., with the decrease of fractional order, the fractional order Newton-Leipnik system shows mutation from double attractor to single attractor, the dynamic behavior experiences chaos, transient period and converges to one stable equilibrium.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2010年第3期1583-1592,共10页
Acta Physica Sinica
基金
国家自然科学基金(批准号:60573172
60973152)
高等学校博士学科点专项科研基金(批准号:20070141014)
辽宁省自然科学基金(批准号:20082165)资助的课题~~