期刊文献+

直接甲醇燃料电池的混合模型及其仿真分析 被引量:1

Direct methanol fuel cell hybrid model and simulation analysis
下载PDF
导出
摘要 讨论了一种直接甲醇燃料电池基于机理模型和神经网络模型的混合模型构建方法,利用人工神经网络的非线性逼近能力,对机理模型的不精确性进行有效补偿。混合模型中的神经网络模型根据输入变量和补偿量训练后与机理模型相结合,对电池电压提供了良好的近似预测。 This article discusses a method of direct methanol fuel cell hybrid modeling based mechanism model and artificial neural network model. The artificial neural network of the hybrid model has the capacity of non-linear approximation, and it can give an effective compensation for the inaccurate of mechanism model. The neural network model can give a good prediction of the output variables after training with input variables and compensation combined with mechanism model.
出处 《电子技术应用》 北大核心 2010年第3期67-70,74,共5页 Application of Electronic Technique
基金 河南省科技创新人才计划(项目编号:84200510009)
关键词 直接甲醇燃料电池 混合模型 神经网络 MATLAB仿真 direct methanol fuel cell hybrid model artificial neural network Matlab simulation
  • 相关文献

参考文献10

  • 1ARGYROPOULOS P,SCOTT K,SHUKLA A K,et al.Asemi-empirical model of the direct methanol fuel cell performance Part I.Model development and verification[J].Power Sources, 2003,123 : 190-199.
  • 2HADDAD A, BOUYEKHF R.Dynamic modeling and water management in proton exchange membrane fuel cell [J]. Hydrogen Energy, 2008,33 : 6239-6252.
  • 3OGAJI S O T,SINGH R.Modelling fuel cell performance using artificial intelligence[J].Power Sources, 2006,154 : 192-197.
  • 4ARRIAGADA J, OLAUSSON P, SELIMOVIC A.Artificial neural network simulator for SOFC performance prediction[J]. Power Sources, 2002,112 : 54-60.
  • 5OU S,LUKE,ACHENIE E K.A hybrid neural network model for PEM fuel cells[J].Power Sources,2005,140: 310-330.
  • 6苗青,曹广益,朱新坚.燃料电池的模糊神经网络辨识建模与电压控制[J].上海交通大学学报,2005,39(S1):95-97. 被引量:3
  • 7YUAN H C,XIONG F L,HUAI X Y.A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy[J].Computers and Electronics in Agriculture, 2003,40 : 57-64.
  • 8WANG R,QI L,Xie X.Modeling of 5-cell direct methanol fuel cell using adaptive-network-based fuzzy inference systems[J].Power Sources, 2008,185 : 1201-1208.
  • 9TIRNOVAN R, GIURGEA S,MIRAOUI A ,et al.Proton exchange membrane fuel cell modeling based on a mixed moving least squares technique[J].Hydrogen Energy, 2008,33 : 6232-6238.
  • 10王瑞敏,张颖颖,曹广益,朱新坚.质子交换膜燃料电池机理与ANN混合模型的建模与仿真分析[J].华东电力,2007,35(11):34-37. 被引量:1

二级参考文献14

  • 1卫东,曹广益,朱新坚.基于自适应模糊神经技术的质子交换膜燃料电池建模与控制[J].系统仿真学报,2004,16(5):987-991. 被引量:5
  • 2Shan Y Y, Choe S Y. A high dynamic PEM fuel cell model with temperature effects[J]. Journal of Power Sources, 2005,( 145 ) :30-39.
  • 3Marr C, Li X. An engineering model of proton exchange membrane fuel cell performance[J]. ARI, 1998,(50).
  • 4Maher A R, Sadidq A B. Modelling of proton exchange mem- brane fuel cell performance based on semi-empirical equations [J]. Renewable Energy, 2005,30 : 1587-1599.
  • 5Yuan H C, Xiong F L, Huai X Y, Amethod for estimating the number of hidden neurons in feed-forward neural networks based on information entropy[J]. Computers and Electronics in Agriculture, 2003,(40) :57-64.
  • 6Jeferson M C, Marcelo G S. Sensitivity analysis of the modelling parameters used in simulation of proton exchange membrane fuel cells [ J ]. Transactions on energy conversion, 2005,20(1) : 211-218.
  • 7Pathapati P R,Xue X, Tang J. A new dynamic model for pre- dicting transient phenomena in a PEM fuel cell system [ J ]. Renewable Energy, 2005,( 30 ) : 1-22.
  • 8Mehta V, Cooper J S. Review and analysis of PEM fuel cell design and manufacturing [ J ]. Journal of Power Sources, 2003,25 (114) :32-53.
  • 9Ou S D, Achenie L E K. A hybrid neural network model for PEM fuel cells [ J ]. Journal of Power Sources, 2005, (140).
  • 10Pukrushpan J T, Peng H, Stefanopoulou A G. Control-oftented modeling and analysis for automotive fuel cell systems [ C]. IFAC, Control Engineering Practice, 2005.

共引文献2

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部